• 제목/요약/키워드: Mammary alveolar (MAC-T) Cell

검색결과 6건 처리시간 0.018초

Mammary alveolar cell as in vitro evaluation system for casein gene expression involved in glucose level

  • Heo, Young Tae;Ha, Woo Tae;Lee, Ran;Lee, Won-Young;Jeong, Ha Yeon;Hwang, Kyu Chan;Song, Hyuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권6호
    • /
    • pp.878-885
    • /
    • 2017
  • Objective: Glucose is an essential fuel in the energy metabolism and synthesis pathways of all mammalian cells. In lactating animals, glucose is the major precursor for lactose and is a substrate for the synthesis of milk proteins and fat in mammary secretory (alveolar) epithelial cells. However, clear utilization of glucose in mammary cells during lactogenesis is still unknown, due to the lack of in vitro analyzing models. Therefore, the objective of this study was to test the reliability of the mammary alveolar (MAC-T) cell as an in vitro study model for glucose metabolism and lactating system. Methods: Undifferentiated MAC-T cells were cultured in three types of Dulbecco's modified Eagle's medium with varying levels of glucose (no-glucose: 0 g/L, low-glucose: 1 g/L, and high-glucose: 4.5 g/L) for 8 d, after which differentiation to casein secretion was induced. Cell proliferation and expression levels of apoptotic genes, Insulin like growth factor-1 (IGF1) receptor, oxytocin receptor, ${\alpha}S1$, ${\alpha}S2$, and ${\beta}$ casein genes were analyzed at 1, 2, 4, and 8 d after differentiation. Results: The proliferation of MAC-T cells with high-glucose treatment was seen to be significantly higher. Expression of apoptotic genes was not affected in any group. However, expression levels of the mammary development related gene (IGF1 receptor) and lactation related gene (oxytocin receptor) were significantly higher in the low-glucose group. Expressions of ${\alpha}S1-casein$, ${\alpha}S2-casein$, and ${\beta}-casein$ were also higher in the low-glucose treated group as compared to that in the no-glucose and high-glucose groups. Conclusion: The results demonstrated that although a high-glucose environment increases cell proliferation in MAC-T cells, a low-glucose treatment to MAC-T cells induces higher expression of casein genes. Our results suggest that the MAC-T cells may be used as an in vitro model to analyze mammary cell development and lactation connected with precise biological effects.

Regeneration of Bovine Mammary Gland in Immunodeficient Mice by Transplantation of Bovine Mammary Epithelial Cells Mixed with Matrigel

  • Park, Hyun Jung;Lee, Won Young;Jeong, Ha Yeon;Song, Hyuk
    • International Journal of Stem Cells
    • /
    • 제9권2호
    • /
    • pp.186-191
    • /
    • 2016
  • Background and Objectives: With the global demand for dairy protein for consumption growing annually, there has been increasing activity in the research field of dairy protein synthesis and production. From a manipulation perspective, it is more difficult to use live cattle for laboratory studies on the production of milk as well as of dairy protein such as casein, as compared with using laboratory animals like rodents. Therefore, we aimed to develop a mouse model of bovine mammary alveolar ducts for laboratory-scale studies. We studied the formation of the bovine mammary gland ductal structure by transplanting the MAC-T bovine alveolar cell line into mice. Methods and Results: MAC-T cells ($1{\times}10^7$) were suspended in Matrigel and injected into the dorsal tissue of 8-week-old male BALB/C nude mice. Histological analysis of tissue dissected from the MAC-T cell-transplanted mice after 6 weeks showed the typical morphology of the tubuloalveolar female gland, as well as glands made up of branching ducts that were surrounded by smooth muscle with small alveoli budding off the ducts. In addition, the epithelial markers CK14 and CK18 were expressed within the duct-like structure. Prolactin was detected in the duct interior in these CK14+ and CK18+ cells but not in the non-transplanted MAC-T cells. Conclusions: These results showed that duct-like tissue had been successfully formed after 6 weeks of transplantation of the CK14+ and CK18+ MAC-T cells into mice dorsal tissue. This mouse model will be a useful tool for further research on the bovine mammary gland.

High-dose lipopolysaccharide induced autophagic cell death in bovine mammary alveolar cells

  • Park, Jin-Ki;Yeo, Joon Mo;Cho, Kwanghyun;Park, Hyun-Jung;Lee, Won-Young
    • 한국동물생명공학회지
    • /
    • 제37권3호
    • /
    • pp.169-175
    • /
    • 2022
  • Bovine mammary epithelial (MAC-T) cells are commonly used to study mammary gland development and mastitis. Lipopolysaccharide is a major bacterial cell membrane component that can induce inflammation. Autophagy is an important regulatory mechanism participating in the elimination of invading pathogens. In this study, we evaluated the mechanism underlying bacterial mastitis and mammary cell death following lipopolysaccharide treatment. After 24 h of 50 ㎍/mL lipopolysaccharide treatment, a significant decrease in the proliferation rate of MAC-T cells was observed. However, no changes were observed upon treatment of MAC-T cells with 10 ㎍/mL of lipopolysaccharide for up to 48 h. Thus, upon lipopolysaccharide treatment, MAC-T cells exhibit dose-dependent effects of growth inhibition at 10 ㎍/mL and death at 50 ㎍/mL. Treatment of MAC-T cells with 50 ㎍/mL lipopolysaccharide also induced the expression of autophagy-related genes ATG3, ATG5, ATG10, ATG12, MAP1LC3B, GABARAP-L2, and BECN1. The autophagy-related LC3A/B protein was also expressed in a dose-dependent manner upon lipopolysaccharide treatment. Based on these results, we suggest that a high dose of bacterial infection induces mammary epithelial cell death related to autophagy signals.

Effect of serotonin on the cell viability of the bovine mammary alveolar cell-T (MAC-T) cell line

  • Xusheng, Dong;Chen, Liu;Jialin, Miao;Xueyan, Lin;Yun, Wang;Zhonghua, Wang;Qiuling, Hou
    • Journal of Animal Science and Technology
    • /
    • 제64권5호
    • /
    • pp.922-936
    • /
    • 2022
  • 5-Hydroxytryptamine (5-HT), a monoamine, as a local regulator in the mammary gland is a chemical signal produced by the mammary epithelium cell. In cows, studies have shown that 5-HT is associated with epithelial cell apoptosis during the degenerative phase of the mammary gland. However, studies in other tissues have shown that 5-HT can effectively promote cell viability. Whether 5-HT could have an effect on mammary cell viability in dairy cows is still unknown. The purpose of this study was to determine: (1) effect of 5-HT on the viability of bovine mammary epithelial cells and its related signaling pathways, (2) interaction between prolactin (PRL) and 5-HT on the cell viability. The bovine mammary alveolar cell-T (MAC-T) were cultured with different concentrations of 5-HT for 12, 24, 48 or 72 hours, and then were assayed using cell counting kit-8, polymerase chain reaction (PCR) and immunobloting. The results suggested that 20 μM 5-HT treatment for 12 or 24 h promote cell viability, which was mainly induced by the activation of 5-HT receptor (5-HTR) 1B and 4, because the increase caused by 5-HT vanished when 5-HTR 1B and 4 was blocked by SB224289 and SB204070. And protein expression of mammalian target of rapamycin (mTOR), eukaryotic translation elongation factor 2 (eEF2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were decreased after blocking 5-HT 1B and 4 receptors. When MAC-T cells were treated with 5-HT and PRL simultaneously for 24 h, both the cell viability and the level of mTOR protein were significantly higher than that cultured with 5-HT or PRL alone. In conclusion, our study suggested that 5-HT promotes the viability of MAC-T cells by 5-HTR 1B and/or 4. Furthermore, there is a reciprocal relationship between PRL and 5-HT.

Phytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells

  • Kang, Sukyung;Lee, Jae Sung;Lee, Hai Chon;Petriello, Michael C.;Kim, Bae Yong;Do, Jeong Tae;Lim, Dae-Seog;Lee, Hong Gu;Han, Sung Gu
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.579-587
    • /
    • 2016
  • Mastitis is a prevalent inflammatory disease that remains one of the main causes of poor quality of milk. Phytoncides are naturally occurring anti-inflammatory compounds derived from plants and trees. To determine if treatment with phytoncide could decrease the severity of lipopolysaccharide (LPS)-induced inflammatory responses, mammary alveolar epithelial cells (MAC-T) were pretreated with phytoncide (0.02% and 0.04% (v/v)) followed by LPS treatment (1 and 25 μg/ml). The results demonstrated that phytoncide downregulated LPS-induced pro-inflammatory cyclooxygenase-2 (COX-2) expression. Additionally, LPS-induced activation of ERK1/2, p38, and Akt was attenuated by phytoncide. Treatment of cells with known pharmacological inhibitors of ERK1/2 (PD98059), p38 (SB203580), and Akt (LY294002) confirmed the association of these signaling pathways with the observed alterations in COX-2 expression. Moreover, phytoncide attenuated LPS-induced NF-κB activation and superoxide production, and, finally, treatment with phytoncide increased Nrf2 activation. Results suggest that phytoncide can decrease LPS-induced inflammation in MAC-T cells.

Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition

  • Zhou, Jia;Yue, Shuangming;Xue, Benchu;Wang, Zhisheng;Wang, Lizhi;Peng, Quanhui;Xue, Bai
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.1126-1141
    • /
    • 2021
  • Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42℃ for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 ㎍/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 ㎍/mL (MET70, 70 ㎍/mL of Met), 20 ㎍/mL (MET80, 80 ㎍/mL of Met), and 30 ㎍/mL (MET90,90 ㎍/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 ㎍/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 ㎍/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 ㎍/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells.