• 제목/요약/키워드: Malware Application Classification

검색결과 14건 처리시간 0.018초

Android malicious code Classification using Deep Belief Network

  • Shiqi, Luo;Shengwei, Tian;Long, Yu;Jiong, Yu;Hua, Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.454-475
    • /
    • 2018
  • This paper presents a novel Android malware classification model planned to classify and categorize Android malicious code at Drebin dataset. The amount of malicious mobile application targeting Android based smartphones has increased rapidly. In this paper, Restricted Boltzmann Machine and Deep Belief Network are used to classify malware into families of Android application. A texture-fingerprint based approach is proposed to extract or detect the feature of malware content. A malware has a unique "image texture" in feature spatial relations. The method uses information on texture image extracted from malicious or benign code, which are mapped to uncompressed gray-scale according to the texture image-based approach. By studying and extracting the implicit features of the API call from a large number of training samples, we get the original dynamic activity features sets. In order to improve the accuracy of classification algorithm on the features selection, on the basis of which, it combines the implicit features of the texture image and API call in malicious code, to train Restricted Boltzmann Machine and Back Propagation. In an evaluation with different malware and benign samples, the experimental results suggest that the usability of this method---using Deep Belief Network to classify Android malware by their texture images and API calls, it detects more than 94% of the malware with few false alarms. Which is higher than shallow machine learning algorithm clearly.

A Risk Classification Based Approach for Android Malware Detection

  • Ye, Yilin;Wu, Lifa;Hong, Zheng;Huang, Kangyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.959-981
    • /
    • 2017
  • Existing Android malware detection approaches mostly have concentrated on superficial features such as requested or used permissions, which can't reflect the essential differences between benign apps and malware. In this paper, we propose a quantitative calculation model of application risks based on the key observation that the essential differences between benign apps and malware actually lie in the way how permissions are used, or rather the way how their corresponding permission methods are used. Specifically, we employ a fine-grained analysis on Android application risks. We firstly classify application risks into five specific categories and then introduce comprehensive risk, which is computed based on the former five, to describe the overall risk of an application. Given that users' risk preference and risk-bearing ability are naturally fuzzy, we design and implement a fuzzy logic system to calculate the comprehensive risk. On the basis of the quantitative calculation model, we propose a risk classification based approach for Android malware detection. The experiments show that our approach can achieve high accuracy with a low false positive rate using the RandomForest algorithm.

Dimensionality Reduction of Feature Set for API Call based Android Malware Classification

  • Hwang, Hee-Jin;Lee, Soojin
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.41-49
    • /
    • 2021
  • 악성코드를 포함한 모든 응용프로그램은 실행 시 API(Application Programming Interface)를 호출한다. 최근에는 이러한 특성을 활용하여 API Call 정보를 기반으로 악성코드를 탐지하고 분류하는 접근방법이 많은 관심을 받고 있다. 그러나 API Call 정보를 포함하는 데이터세트는 그 양이 방대하여 많은 계산 비용과 처리시간이 필요하다. 또한, 악성코드 분류에 큰 영향을 미치지 않는 정보들이 학습모델의 분류 정확도에 영향을 미칠 수도 있다. 이에 본 논문에서는 다양한 특성 선택(feature selection) 방법을 적용하여 API Call 정보에 대한 차원을 축소시킨 후, 핵심 특성 집합을 추출하는 방안을 제시한다. 실험은 최근 발표된 안드로이드 악성코드 데이터세트인 CICAndMal2020을 이용하였다. 다양한 특성 선택 방법으로 핵심 특성 집합을 추출한 후 CNN(Convolutional Neural Network)을 이용하여 안드로이드 악성코드 분류를 시도하고 결과를 분석하였다. 그 결과 특성 선택 알고리즘에 따라 선택되는 특성 집합이나 가중치 우선순위가 달라짐을 확인하였다. 그리고 이진분류의 경우 특성 집합을 전체 크기의 15% 크기로 줄이더라도 97% 수준의 정확도로 악성코드를 분류하였다. 다중분류의 경우에는 최대 8% 이하의 크기로 특성 집합을 줄이면서도 평균 83%의 정확도를 달성하였다.

De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining

  • Su, Xin;Liu, Xuchong;Lin, Jiuchuang;He, Shiming;Fu, Zhangjie;Li, Wenjia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3230-3253
    • /
    • 2017
  • Android malware steals users' private information, and embedded unsafe advertisement (ad) libraries, which execute unsafe code causing damage to users. The majority of such traffic is HTTP and is mixed with other normal traffic, which makes the detection of malware and unsafe ad libraries a challenging problem. To address this problem, this work describes a novel HTTP traffic flow mining approach to detect and categorize Android malware and unsafe ad library. This work designed AndroCollector, which can automatically execute the Android application (app) and collect the network traffic traces. From these traces, this work extracts HTTP traffic features along three important dimensions: quantitative, timing, and semantic and use these features for characterizing malware and unsafe ad libraries. Based on these HTTP traffic features, this work describes a supervised classification scheme for detecting malware and unsafe ad libraries. In addition, to help network operators, this work describes a fine-grained categorization method by generating fingerprints from HTTP request methods for each malware family and unsafe ad libraries. This work evaluated the scheme using HTTP traffic traces collected from 10778 Android apps. The experimental results show that the scheme can detect malware with 97% accuracy and unsafe ad libraries with 95% accuracy when tested on the popular third-party Android markets.

행위기반의 프로파일링 기법을 활용한 모바일 악성코드 분류 기법 (Andro-profiler: Anti-malware system based on behavior profiling of mobile malware)

  • 윤재성;장재욱;김휘강
    • 정보보호학회논문지
    • /
    • 제24권1호
    • /
    • pp.145-154
    • /
    • 2014
  • 본 논문에서는 범죄수사에서 사용되는 프로파일링 기법을 이용한 모바일 악성코드 행위 프로파일링을 통하여 효율적인 모바일 악성코드 분류 방법론 Andro-profiler를 제안한다. Andro-profiler는 클라이언트/서버 형태로, 클라이언트 앱이 모바일기기에 설치되어 사용자가 사용하고 있는 앱에 대한 정보를 서버에 전송하고, 서버에서는 해당 앱을 동적 분석 도구인 Droidbox가 설치된 에뮬레이터에서 실행시키면서 발생되는 시스템 콜과 에뮬레이터 로그를 이용하여 해당 앱의 행동을 프로파일링하며, 해당 앱의 프로파일링 목록을 저장된 악성코드 프로파일링 DB와 비교하여 악성유무를 판단하고, 악성코드로 판단될 경우 분류를 실시하여 클라이언트에게 결과를 통보한다. 실험결과, Andro-profiler는 1MB의 악성코드를 분류하는데 평균 55초가 소요되었고, 99%의 정확도로 악성코드를 분류하는 것을 확인하였으며, 기존 방법론보다 더 정확하게 악성코드를 분류할 수 있다.

안드로이드 모바일 악성 앱 탐지를 위한 확률적 K-인접 이웃 분류기 (Probabilistic K-nearest neighbor classifier for detection of malware in android mobile)

  • 강승준;윤지원
    • 정보보호학회논문지
    • /
    • 제25권4호
    • /
    • pp.817-827
    • /
    • 2015
  • 현대인은 스마트폰과 매우 밀접한 관계를 가지고 있으며 이로 인한 수 많은 보안 위협에 노출되어 있다. 실제로 해커들은 스마트폰에 악성 프로그램을 은밀하게 설치하여 장치 이용 제한 및 개인정보 유출 등의 보안 위협을 야기하고 있다. 그리고 그러한 악성 프로그램은 일반적인 프로그램과 다르게 필요 이상의 권한을 요구한다. 본 논문에서는 이 같은 문제를 바탕으로 사용되는 안드로이드 기반 앱들이 요구하는 권한 데이터를 이용하여 주성분 분석(Principle Component Analysis:PCA)과 확률적 K-인접 이웃(Probabilistic K-Nearest Neighbor:PKNN) 방식을 사용하여 효과적으로 악성 프로그램과 일반 프로그램을 분류하고자 한다. 이뿐 아니라 이를 k-묶음 교차 검증(K-fold Croos Validation)을 통해 PKNN의 정확도를 측정하였다. 그리고 일반적으로 사용되는 K-인접 이웃(K-Nearest Neighbor:KNN) 방식과 비교하여, KNN이 분류하기 힘든 부분을 확률적으로 해결하는 PKNN방법을 제안한다. 최종적으로 제안한 방식을 최적화하는 ${\kappa}$${\beta}$ 파라미터를 구하는 것을 목표로 한다. 본 논문에서 사용된 악성 앱 샘플은 Contagio에 요청하여 이용하였다.

Naive Bayes 기반 안드로이드 악성코드 분석 기술 연구 (Android Malware Analysis Technology Research Based on Naive Bayes)

  • 황준호;이태진
    • 정보보호학회논문지
    • /
    • 제27권5호
    • /
    • pp.1087-1097
    • /
    • 2017
  • 스마트 폰의 보급률이 증가함에 따라 스마트 폰을 대상으로 하는 악성코드들이 증가하고 있다. 360 Security의 스마트 폰 악성코드 통계에 따르면 2015년 4분기에 비해 2016년 1분기에 악성코드가 437% 증가하는 수치를 보였다. 특히 이러한 스마트 폰 악성코드 유포의 주요 수단인 악성 어플리케이션들은 사용자 정보 유출, 데이터 파괴, 금전 갈취 등을 목적으로 하는데 운영 체제나 프로그래밍 언어가 제공하는 기능을 제어할 수 있게 해주는 인터페이스인 API에 의하여 동작하는 경우가 대부분이다. 본 논문에서는 정적 분석으로 도출한 어플리케이션 내 API의 패턴을 지도 학습 기법으로 머신에 학습하여 정상 어플리케이션과 악성 어플리케이션 내의 API 패턴의 유사도에 따라 악성 어플리케이션을 탐지하는 메커니즘을 제시하고 샘플 데이터에 대하여 해당 메커니즘을 사용하여 도출한 label 별 탐지율과 탐지율 개선을 위한 기법을 보인다. 특히, 제안된 메커니즘의 경우 신종 악성 어플리케이션의 API 패턴이 기존에 학습된 패턴과 일정 수준 유사한 경우 탐지가 가능하며 향후 어플리케이션의 다양한 feature를 연구하여 본 메커니즘에 적용한다면 anti-malware 체계의 신종 악성 어플리케이션 탐지에 사용될 수 있을 것이라 예상된다.

안드로이드 플랫폼에서 악성 행위 분석을 통한 특징 추출과 머신러닝 기반 악성 어플리케이션 분류 (Malware Application Classification based on Feature Extraction and Machine Learning for Malicious Behavior Analysis in Android Platform)

  • 김동욱;나경기;한명묵;김미주;고웅;박준형
    • 인터넷정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.27-35
    • /
    • 2018
  • 본 논문은 안드로이드 플랫폼에서 악성 어플리케이션을 탐지하기 위한 연구로, 안드로이드 악성 어플리케이션에 대한 위협과 행위 분석에 대한 연구를 바탕으로 머신러닝을 적용한 악성 어플리케이션 탐지를 수행하였다. 안드로이드의 행위 분석은 동적 분석도구를 통해 수행할 수 있으며, 이를 통해 어플리케이션에 대한 API Calls, Runtime Log, System Resource, Network 등의 정보를 추출할 수 있다. 이 연구에서는 행위 분석을 통한 특징 추출을 머신러닝에 적용하기 위해 특징에 대한 속성을 변환하고, 전체 특징에 대한 머신러닝 적용과 특징들의 연관분석을 통한 주성분분석으로 특징간의 상관분석으로 얻은 머신러닝 적용을 수행하였다, 이에 대한 결과로 악성 어플리케이션에 대한 머신러닝 분류 결과는 전체 특징을 사용한 분류 결과보다 주요 특징을 통한 정확도 결과가 약 1~4%정도 향상되었으며, SVM 분류기의 경우 10%이상의 좋은 결과를 얻을 수 있었다. 이 결과를 통해서 우리는 전체적인 특징을 이용하는 것보다, 주요 특징만을 통해 얻을 결과가 전체적인 분류 알고리즘에 더 좋은 결과를 얻을 수 있고, 데이터 세트에서 의미있는 특징을 선정하는 것이 중요하다고 파악하였다.

Classification of HTTP Automated Software Communication Behavior Using a NoSQL Database

  • Tran, Manh Cong;Nakamura, Yasuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권2호
    • /
    • pp.94-99
    • /
    • 2016
  • Application layer attacks have for years posed an ever-serious threat to network security, since they always come after a technically legitimate connection has been established. In recent years, cyber criminals have turned to fully exploiting the web as a medium of communication to launch a variety of forbidden or illicit activities by spreading malicious automated software (auto-ware) such as adware, spyware, or bots. When this malicious auto-ware infects a network, it will act like a robot, mimic normal behavior of web access, and bypass the network firewall or intrusion detection system. Besides that, in a private and large network, with huge Hypertext Transfer Protocol (HTTP) traffic generated each day, communication behavior identification and classification of auto-ware is a challenge. In this paper, based on a previous study, analysis of auto-ware communication behavior, and with the addition of new features, a method for classification of HTTP auto-ware communication is proposed. For that, a Not Only Structured Query Language (NoSQL) database is applied to handle large volumes of unstructured HTTP requests captured every day. The method is tested with real HTTP traffic data collected through a proxy server of a private network, providing good results in the classification and detection of suspicious auto-ware web access.

안드로이드 모바일 단말기를 위한 효율적인 악성앱 감지법 (Efficient Malware Detector for Android Devices)

  • 이혜림;장수희;윤지원
    • 정보보호학회논문지
    • /
    • 제24권4호
    • /
    • pp.617-624
    • /
    • 2014
  • 스마트폰 사용이 급증하였고 스마트폰에 탑재되는 OS 중 안드로이드가 차지하는 비중이 가장 높아졌다. 그러나 오픈소스로 제공되는 안드로이드의 특성이 악의적인 사용자들에게 유용하게 사용되어 스마트폰 사용자들의 프라이버시를 위협하고 있다. 이 논문에서 우리는 안드로이드 앱에서 요구하는 권한 정보를 사용하여 효율적인 악성앱 감지법을 제안한다. 이를 위하여 주성분 분석과 kNN 분류자를 사용하였으며, 새로운 앱들의 특성들을 분류자에 실시간으로 반영하기 위한 incremental kNN 분류자를 제안한다. 또한 이 분류자들의 정확률을 측정하기 위하여 k-묶음 교차 검증법을 사용하였다. 실험에 사용된 실제 악성앱 샘플을 얻기 위하여 Contagio에 요청하였으며 이를 이용하여 분류자의 정확률을 측정하였다.