
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, Feb. 2017 959
Copyright ⓒ2017 KSII

A Risk Classification Based Approach for
Android Malware Detection

Yilin Ye1, Lifa Wu1, Zheng Hong1, Kangyu Huang1

1 Institute of Command Information System, PLA University of Science and Technology, No.1 Haifu Street,
Nanjing, Jiangsu, China

[e-mail: my_etsi@163.com, wulifa@vip.163.com, hongzhengjs@139.com, huangkangyu@163.com]
*Corresponding author: Li-fa Wu

Received December 11, 2015; revised October 12, 2016; revised November 21, 2016;

accepted December 23, 2016; published February 28, 2017

Abstract

Existing Android malware detection approaches mostly have concentrated on superficial
features such as requested or used permissions, which can’t reflect the essential differences
between benign apps and malware. In this paper, we propose a quantitative calculation model
of application risks based on the key observation that the essential differences between benign
apps and malware actually lie in the way how permissions are used, or rather the way how their
corresponding permission methods are used. Specifically, we employ a fine-grained analysis
on Android application risks. We firstly classify application risks into five specific categories
and then introduce comprehensive risk, which is computed based on the former five, to
describe the overall risk of an application. Given that users’ risk preference and risk-bearing
ability are naturally fuzzy, we design and implement a fuzzy logic system to calculate the
comprehensive risk. On the basis of the quantitative calculation model, we propose a risk
classification based approach for Android malware detection. The experiments show that our
approach can achieve high accuracy with a low false positive rate using the RandomForest
algorithm.

Keywords: Android, malware detection, risk, machine learning, fuzzy logic

This work was supported by The Nature Science Foundation of Jiangsu China under Grant No.BK20131069. The
authors would like to thank the anonyous reivewers for their valuable comments which improved the quality of this
paper.

https://doi.org/10.3837/tiis.2017.02.018 ISSN : 1976-7277

mailto:hongzhengjs@139.com

960 Ye et al.: A risk classification based Android malware detection approach

1. Introduction

Recently, A market report [1] released by IDC shows that Android holds about 82.8% of the
mobile system market share during the last quarter. Due to its overwhelming market share and
a great number of users, Android has become the most popular platform of malicious attackers.
Driven by economical interest, there is a boost in the number of malware, spywares in Android
mobile markets. As showed in [2], 3.26 million Android malware have been dectectd in 2014,
compared with the number of Android malware a year ago, the number increased nearly 386%.
While the number of affected users reached 319 million, it increased 517% compared with the
number of the affected users last year.

Plenty of research has been made to alleviate the increasing threat to Android system
brought by malware. One of the hot directions is Android permission analysis [3][4][5][6][7],
where researchers have presented lots of work on Android system security enhancement
[8][9][10][11][12][13][14] and malware detection [15][16][17]. According to the techniques
employed, Android malware detection approaches can be classified into static analysis and
dynamic analysis. Dynamic analysis captures what the sample has done during the evaluation,
and relies on runtime behaviors to judge whether the sample is malicious or not. The down
side of dynamic analysis is that it suffers from a big system overhead and inefficient path
coverage, which causes false positives.

Reina et al. presented CopperDroid [18] to monitor the inner IPC and RPC communication
of Android applications and capture runtime system calls to reconstruct application behaviors.
VetDroid [19] concentrated on used permissions of an app, and only captured the system calls
related to used permissions. Andrubis [20] applied static analysis to extract static features, and
applied dynamic analysis to reconstruct runtime behaviors. Andrubis then combined static
features and run-time behaviors to detect Android malware. There are other typical approaches
based on dynamic analysis such as [21][22][23][24][25][26].

Compared with dynamic analysis, static analysis focuses on source code instead of runtime
behavior. It is a lightweight technique that consumes relatively less system resources and
achieves high path coverage, but it can be evaded by techniques such as obfuscation and
dynamic loading.

Among all the schemes based on static analysis, permission-based schemes concentrate on
requested permissions. Kirin [27] detected Android malware based on dangerous permission
combinations or suspicious action strings. The approach presented in [28] extended Kirin by
increasing the number of permissions to define more permission combinations. As there are
few differences in requested or used permissions between benign apps and malware,
permission-based approaches suffer the problem of low detection rate.

To overcome the shortcomings of permission-based approaches, multi-category feature
based approaches [29][30][31][32][33] were proposed, which extracted many other static
features besides permissions. DroidAPIMiner [34] conducted frequency analysis and data
flow analysis to all APIs used in an app to acquire most frequently used APIs and their
parameters. Drebin [35] conducted a broad static analysis to extract the application features
containing permissions, application components, sensitive APIs, network addresses, strings
and so on. Though more features are extracted to overcome the disadvantages of
permission-based approaches, multi-category feature based approaches still suffered the
problem that the features extracted can’t reflect the key differences between malicious apps
and benign apps.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 961

After analyzing over 30,000 samples, we found that the superficial features (e.g. requested
or used permissions, sensitive APIs, filtered intents) of the two types of apps showed high
similarities. Naturally, it will end in relatively high false positives and false negatives if we
rely on superficial features to detect Android malware.

In this paper, we aim to overcome the shortcomings of current static analysis based methods.
Based on the key observation that the essential differences between malicious apps and benign
apps are rooted in the way they use the permissions granted by the users, we concentrate on
how requested permissions are used in an app. As Android system maps application
permissions to different permission methods in the Framework layer, we can employ
permission methods to describe how the corresponding permissions are used, and we propose
the notion of function call trace which represents an ordered sequence of methods
corresponding to different nodes on an execution path of an app’s function call graph.

Based on the above analysis, we have designed a quantitative calculation model of
application risks, and proposed a novel Android malware detection approach on the basis of
risk classification. Specifically, we classify application risks into five types of specific risk
(money risk, privacy risk, network connection risk, highly dangerous permission risk and
sensitive program behavior risk), and propose comprehensive risk to evaluate the overall risk
of an Android application. The comprehensive risk is computed based on the former five. As
risk preference and risk-bearing ability of the users are naturally fuzzy, we introduce fuzzy
logic to calculate comprehensive risk.

In summary, the main contributions of our work are listed as follows.
 To overcome the disadvantages of existing static analysis based approaches that the

used features are not effective to distinguish malware from benign Android
applications, we choose the way how permissions are used as the basic distinguishing
feature, and it is described by the function call traces corresponding to permission
methods. We present a risk classification based approach for Android malware
detection, which can achieve 93.2% detection accuracy.

 We employ a fine-grained analysis on Android application risks, and propose a
quantitative calculation model of application risks.

 We implement a fuzzy logic system to compute the overall application risk, which is
fuzzy due to the fact that users differ in risk preference and risk tolerance.

The remainder of this paper is organized as follows: Section 2 illustrates the motivation of
this paper. Section 3 describes our method in details. After that, experiments and result
analysis are presented in section 4. Related work and limitations are discussed in section 5 and
section 6. Section 7 concludes the paper and proposes future work.

2. Motivation

After analyzing over 30,000 samples (discussed in section 4.1), we discovered that benign
apps and malicious apps show high similarity among superficial features, such as requested
and used permissions, broadcast events, sensitive program behaviors. Fig. 1 (a) and Fig. 1 (b)
depict the comparison of frequency between requested and used permissions of benign apps
and malicious apps respectively. As shown in both figures, the frequency of requested
permissions are higher than used permissions, indicating that many Android applications are
actually over-privileged, which would lower the accuracy of approaches based on requested
permissions.

962 Ye et al.: A risk classification based Android malware detection approach

Fig. 1(a). comparison of requested and used frequency of the top 20 permissions of benign apps

Fig. 1(b). comparison of requested and used frequency of the top 20 permissions of malware

Fig. 1(c). differences of requested and used permissions between benign apps and malware

Fig. 1(c) depicts the frequency differences of requested and used permissions between

benign apps and malware. The average frequency difference of requested permissions is 0.09,
while that of used permissions is 0.11, indicating there are no obvious differences regarding
permissions (requested or used) between the two app types. Fig. 2 (a) and Fig. 2 (b) show the
top 20 registered broadcast events in benign apps and malware respectively. Among the events,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 963

the overlap ratio is nearly 0.65. For the overlapped events, as shown in Fig.2 (c), the average
difference is less than 0.07. As shown in Fig. 3, there are few differences in frequency of
sensitive program behaviors shown up in the two app types. The frequency differences of the
four sensitive program behaviors are all within 0.1.

Fig. 2(a). top 20 registered broadcast events in benign apps

Fig. 2(b). top 20 registered broadcast events in malware

Fig. 2(c). frequency difference of registered broadcast events between benign apps and malware

As shown in the above figures, we can draw the conclusion that there is no distinguishable

difference in superficial features between benign apps and malicious apps Therefore it is not
desirable to employ superficial features to detect Android malware. However, benign apps
and malicious apps behave quite differently. The root cause is how permissions granted by the
users are used in the apps. All operations that may potentially do harm to the users’ benefit

964 Ye et al.: A risk classification based Android malware detection approach

(financial interest, user privacy or system security) are under the protection of application
permissions in Android system. Only after being granted corresponding permissions can an
application access sensitive data or carry out dangerous operations. Benign applications
usually use permissions in a way that won’t go against the interests of the users; On the
contrary, malware usually intentionally use permissions in a way that will harm users’ benefit.
Thus, it is reasonable to detect Android malware by how Android application permissions are
used. From such a perspective, we propose our risk classification based Android malware
detection approach.

Fig. 3. comparison of frequency of sensitive program behaviors between benign apps and malware

3. Methodology
Our method tries to detect malicious Android applications by quantitative analysis.
Specifically, Android application risks are classified into the following five specific categories:
money risk, privacy risk, sensitive program behavior risk, network connection risk, highly
dangerous permission risk. To describe the overall risk of an application, comprehensive risk
is proposed and computed based on the former five. We implement a quantitative calculation
model to compute application risks and employ the result as the application feature. We then
apply machine learning algorithms to detect malware automatically.

Classification

Function
Call
Trace

Application
 Feature

Predicted
Category

Application
Risks

Classified Risks

Comprehensive
Risk

Samples
Quantitative Calculation Model of Risk

Fuzzy Logic
System

Classified Risks

Classified Risk
Calculation Module

Sample
Analysis
 Module

Fig. 4. workflow of our approach

As shown in Fig. 4, our method consists of three phases. In the beginning, we analyze all the
samples to extract function call traces corresponding to permission methods that belong to
used permissions. Afterwards, application risks used as application feature are computed by
the quantitative calculation model. During the last phase, the application feature is fed to the
selected machine learning algorithms to build the classifiers that will classify the samples.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 965

3.1 Feature extraction
As Android application permissions are mapped to specific permission methods which can be
used to describe how permissions are used. Specifically, we use function call traces of
permission methods to represent how permissions are used in a certain app. Function call
traces are automatically extracted through Python scripts that utilize core APIs provided by
Androguard [36], and the APIs are modified to meet our needs.

Firstly, we analyze the APK file to extract global package information and filter all public
available ad packages which can be assumed security unrelated. After that, the dex file in the
APK file is decompiled into smail files, which are analyzed to extract used permissions and
the function call graph of the application. Using the mapping relationship between permissions
and permission methods provided by PScout[4], we mark all permission methods in the
function call graph. Afterwards, we traverse the function call graph to extract the path that
contains any marked nodes. Finally, we combine all the nodes on the path as a function call
trace. Usually, one permission method has multiple function call traces, only parts of them are
malicious. To filter security unrelated function call traces, we choose only the traces that
satisfy either of the following two conditions.

1) Condition 1
As shown in Table 1, a single highly risky permission can cause security risks to users

without the cooperation of any other permission. The corresponding function call traces are
extracted directly.

Table 1. highly risky permissions
Permission Risk

CALL_PHONE
Allows an application to initiate a phone call

without going through the Dialer user interface
for the user to confirm the call being placed

CALL_PRIVILEGED
Allows an application to call any phone number,
without going through the Dialer user interface

for the user to confirm the call being placed.

INSTALL_PACKAGES Allows an application to install packages

KILL_BACKGROUND_PROCESSES Allows an application to kill background process

SEND_SMS_NO_CONFIRMATION Allows an app to send SMS messages without
user input or confirmation

SET_DEBUG_APP Configures an application for debugging

PROCESS_OUTGOING_CALLS Allows an app to intercept outgoing calls

2) Condition 2
In some cases, there are two or more permissions involved in a function call trace, i.e. there

are at least two permission methods corresponding to two different permissions in a function
call trace. In such cases, only when the combination of those corresponding permissions is of
high risk should the function call trace be extracted. Existing permission-based approaches
such as [27] [28] use permission combinations to detect Android malware. To determine
whether a combination of permissions is risky, a conservative strategy is adopted to ensure
that all security related function call traces are extracted. We extend the union of the
permission combinations proposed in [27] and [28] (when k equals 5). The combinations used
in our approach are shown in Table 2.

966 Ye et al.: A risk classification based Android malware detection approach

Table 2. risky permission combinations
Permission combination Risk

ACCESS_FINE_LOCATION, INTERNT Fine-grained location can be leaked through
internet

ACCESS_FINE_LOCATION, SEND_SMS Fine-grained location can be leaked by sending
SMS messages

ACCESS_COARSE_LOCATION, INTERNT coarse-grained location can be leaked through
internet

ACCESS_COARSE_LOCATION, SEND_SMS coarse-grained location can be leaked by sending
SMS messages

INSTALL_SHORTCUT,
UNINSTALL_SHORTCUT

Allows malicious app redirect its shortcut to other
benign apps

READ_CONTACTS,INTERNET Contacts can be leaked through internet

READ_CONTACTS,SEND_SMS Contacts can be leaked by sending SMS messages

RECEIVE_SMS, WRITE_SMS Allows the malware to remove traces of its
activity

RECORD_AUDIO, INTERNET The recorded audio can be leaked through internet

RECORD_AUDIO, SEND_MMS The recorded audio can be leaked by sending
multimedia messages.

Function call traces are converted into strings using the approach proposed in [37]. We

classify all the strings into three categories: setbenign (set of normal function call traces that only
show up in benign apps), setmalicious (set of malicious function call traces that only show up in
malware), setintersection (set of function call traces that show up in the two types of apps
simultaneously). Due to the length of a function call trace varies with the number and size of
methods in it, we calculate its MD5 for the sake of convenience.

Meanwhile, we use riskbenign, riskmalicious, and riskintersection to represent the risk factors of the
three sets respectively. Specifically, we assign 0 to riskbenign, for the reason that it is impossible
for a function call trace that only shows up in benign applications to be malicious. We assign 1
to riskmalicious, for the reason that it is of high probability that a function call trace is malicious if
it only shows up in malware. When it comes to setintersection, it is reasonable to believe that its
risk factor (for simplicity, we will use rf to represent risk factor in the rest of the paper) should
be lower than 0.5. To determine the best value that achieves the highest accuracy, we consider
the following five values: 0.1, 0.2, 0.3, 0.4 and 0.5, and will analyze the influences of different
riskintersection on detection performance in section 4.3.

Setmalicious may contain some normal function call traces when using rule 2. To eliminate the
interference of normal function call traces, we define malicious trusted probability (for
convenience, we will use Pmt to represent malicious trusted probability in the rest of the paper)
to represent the probability of a function call trace to be malicious. Specifically, we consider
the following four cases: 0.6, 0.7, 0.8 and 0.9, and will analyze the influences of different Pmt
on detection performance in section 4.3.

3.2 Quantitative calculation model
Some researchers attempt to detect Android malware from the perspective of Android
application risks. Sarma et al. [38] detected Android malware based on the observation that
apps in the same category request similar permissions and one app is highly suspicious if it

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 967

applies the permissions barely applied by other apps of the same category. Specifically, they
selected 26 permissions, and defined Rare Critical Permissions and Rare Pairs of Critical
Permissions to calculate the risk of an app. In [39], Peng et al. proposed Probabilistic
Generative Model for risk scoring, and they applied the Bayes model to calculate the
generative probability of an app through the probabilities of each requested permission.
Afterwards, the generative probability was converted to a risk score by the risk scoring
function. At last, it was judged by the rank of risk score which measured whether an app was
risky or not. For instance, an app will be highly risky if its risk score ranks in top 1%.

As discussed earlier, the differences of the requested permissions between benign apps and
malware are tiny, while the basis of the two above approaches are requested permissions, so
the two approaches are deficient inherently. Another limitation of the approaches is that as
none of them analyze the categories of application risks in a detailed way, their results carry
limited information, and can’t tell what threat an Android application may cause (financial
losses, leakage of user privacy, or damage to the system security). To solve such problems, we
implement a detailed analysis of application risks and propose a risk classification based
approach.

3.2.1 Risk classification
Five specific types of risk are closely associate with used permissions or sensitive program
behaviors, while the comprehensive risk is associate with the five types of specific risk. In this
section, we firstly describe the details how we classify application risks. Then we present the
quantitative calculation model, and propose an approach to compute the comprehensive risk.

1. Money risk
Money risk refers to the potential financial losses caused by the use of money –sensitive

permissions. These permissions are listed in Table 3.

Table 3. money risk related permissions
Permission Risk level Risk

CALL_PRIVILEGED High Allows an app to call privileged numbers
CALL_PHONE Average Allows an app to directly call phone numbers

INTERNET Low Allows an app to connect to the internet
SEND_SMS Average Allows an app to send SMS messages

SEND_SMS_NO_CONFIRMATION High Allows an app to send SMS messages
without user input or confirmation

SEND_MMS Average Allows an app to send MMS messages
PROCESS_OUTGOING_CALLS Average Allows an app to intercept outgoing calls

USE_SIP Average Allows an app to make/ receive Internet calls

2. Privacy risk
Privacy risk refers to potential leakage of user privacy caused by the use of

privacy-sensitive permissions, which are listed in Table 4.

Table 4. privacy risk related permissions
Permission Risk level Risk

ACCESS_FINE_LOCATION High Allows an app to access to fine-grained
location

ACCESS_COARSE_LOCATION Average Allows an app to access to coarse-grained
location

968 Ye et al.: A risk classification based Android malware detection approach

GET_ACCOUNTS Average Allows an app to access to all accounts of
the device

READ_SMS High Allows an app to read SMS messages
RECEIVE_SMS High Allows an app to receive SMS messages
RECEIVE_MMS High Allows an app to receive MMS messages

READ_CONTACTS High Allows an app to read all the contacts on the
device

READ_CALENDAR High Allows an app to read calendar events
READ_CALL_LOG High Allows an app to read the user’s call log

READ_EXTERNAL_STORAGE Average Allows an application to read from external
storage

READ_HISTORY_BOOKMARKS Average Allows an app to read user’s Browser
history and bookmarks

READ_PROFILE High Allows an app to read the user’s personal
profile data

RECORD_AUDIO High Allows an app to record audio
READ_USER_DICTIONARY Low Allows an app to read the user’s dictionary

RECEIVE_WAP_PUSH Average Allows an app to receive WAP messages

3. Network connection risk
Complementary to privacy risk, network connection risk refers to the potential privacy risk

when the device connects to other devices or networks. There are four main tunnels through
which user privacy may be leaked. As shown in Table 5, they are Internet, Bluetooth, SMS
and NFC respectively.

Table 5. network connection risk related permissions
Permission Risk level Risk

BLUETOOTH Average Allows an app to create Bluetooth connections
INTERNET High Allows an app to connect to the internet

NFC Average Allows an app to create NFC connections
SEND_SMS High Allows an app to send SMS messages

4. Highly dangerous permission risk
Highly dangerous permission risk refers to the potential risk caused by the use of risky

permissions. Besides the permissions associated with the above three types of risk, highly
dangerous permissions include all permissions whose risk level is dangerous or above. For
instance, the permission WRITE_SECURE_SETTINGS is highly risky because it allows an
app to modify system security configuration.

5. Sensitive program behavior risk
Android malware usually apply techniques such as native code, dynamic loading, Java

reflection and code encryption to thwart static detection. Unfortunately, there are no
corresponding permissions mapped to those sensitive program behaviors. Therefore, we
propose sensitive program behavior risk to indicate the potential threat caused by these
sensitive program behaviors.

6. Comprehensive risk
Comprehensive risk refers to the overall risk. It is a fuzzy variable and its value differs with

risk preference and risk-bearing ability of the users.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 969

3.2.2. Risk Calculation
The value of classified risk is computed by Formula (1), it equals the sum of risk values of all
the used permissions of an app. The risk value of a single permission is the sum of risk values
of function call traces of all permission methods corresponding to that permission. While the
risk value of a single function call trace equals the product of risk factor, malicious trusted
probability, the harmonic factor of function call trace and the unit risk value of its
corresponding classified risk.

1

,
0

l

classified i j i mt j
i j

risk rf c p h
−

=

= ∗ ∗ ∗∑∑ (1)

Where {i, j, l |i∈Perm, j ∈Ctracei, l=len(Ctracei)}, Perm represents the set of used
permissions, Ctracei represents the set of function call traces of permission i, while l is the
number of Ctracei.

In Formula (1), rf represents the risk factor, c represents the unit risk value corresponding to
the permission. The unit risk value of all five types of classified risk is defined in Table 6. It
depends on the category of risk and the risk level of the permission. Pmt represents the
malicious trusted probability, and h represents the harmonic factor, which is computed by
Formula (2).

1 ,
1 ,i

i N
h

i N
i N

≤
= > −

 (2)

Where N represents the average number of function call sequences of the permission，i
represents the i th sequence of the permission.

The reason that we define a harmonic factor is to weaken the correlation between the
number of function call traces and the classified risk. As the value of classified risk is positive
correlated to the number of function call traces, it favors large samples which results in such a
phenomenon: the larger the traces, the greater value of classified risks. Without the harmonic
factor, in some cases, the classified risk value of a benign app may be greater than that of a
malware, which is undoubtedly unreasonable. Thus, we present the harmonic factor. As shown
in Formula (2), we use the square root of i subtracting N as the denominator to compute the
harmonic factor when i is greater than N. It should be noted that we have considered the
logarithm (base to 2, e and 10) and the linear function but found that the quadratic function do
a better job than the other two.

As illustrated in Table 6, there is only one risk level (and one unit risk value) defined for
sensitive program behavior risk and highly dangerous permission risk. The method of
calculating the risk values of the two is to multiply the unit risk value and the number of
sensitive program behaviors or highly dangerous permissions.

Table 6. unit risk value of classified risk
Category Risk level Unit risk value

Money risk
High 5

Average 3
low 1

Privacy risk
High 4

Average 2
low 1

Network connection risk High 3

970 Ye et al.: A risk classification based Android malware detection approach

Average 2
low 1

Highly dangerous risk Average 3

Sensitive program behavior risk Average 3

3.2.3. Fuzzy logic system
As discussed earlier, comprehensive risk is a fuzzy notion whose value varies among different
users. For some users, an app is of low risk, while some others may consider it highly risky.
For the users that care more about money risk, high privacy risk may be tolerable. For the users
that pay more attention to privacy security, high money risk may be acceptable. Inspired by
[36], we have designed and implemented a fuzzy logic system to compute the comprehensive
risk.

Typically, as shown in Fig. 5, a fuzzy logic system consists of three phases: fuzzification,
interference and defuzzification. During the fuzzification phase, a crisp set of input data is
transformed to a fuzzy set using fuzzy linguistic variables, fuzzy linguistic terms, and
membership functions of fuzzy input variables. During the inference phase, an inference is
made according to a set of fuzzy rules. During the last phase, the resulting fuzzy output is
mapped to a crisp output using the membership functions of the pre-defined output fuzzy
variables.

Fuzzification

Rule
Base

Inference

Defuzzification

Fuzzy Input Sets Fuzzy Output Sets

Crisp Inputs Crisp Outputs

Fig. 5. overview of the fuzzy logic system

Linguistic variables: Linguistic variables include input and output variables of the fuzzy
logic system whose values are words or sentences from a natural language, instead of
numerical values [40]. In our system, input variables include five types of risk (Money risk,
privacy risk and so on), while the output variable refers to the comprehensive risk. Usually, a
linguistic variable is decomposed into a set of linguistic terms. In our system, all linguistic
terms are shown in Table 7.

Table 7. linguistic terms
1) Money risk：
LOW :={(0.0，1.0)，(5.0，1.0)，(10.0，0.0)}
AVERAGE := {(5.0，0.0)，(15.0，1.0)，(25.0，0)}
HIGH := {(20.0，0.0)，(35.0，1.0)，(100，1)}
2) Privacy risk
LOW := {(0.0，1.0)，(10.0，1.0)，(15.0，0.0)}
AVERAGE := {(10.0，0.0)，(20.0，1.0)，(30.0，0.0)}
HIGH := {(25.0，0.0)，(35.0，1.0)，(100.0，1.0)}

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 971

3) Sensitive program behavior risk
LOW := {(0.0，1.0)，(2.0，1.0)，(3.0，0.0)}
AVERAGE := {(2.0，0.0)，(6.0，1.0)，(8.0，0.0)}
HIGH := {(6.0，0.0)，(10.0，1.0)，(20，1.0)}
4) Network connection risk
LOW := {(0.0，0.0)，(15.0，1.0)，(20.0，0.0)}
AVERAGE := {(15.0，0.0)，(30.0，1.0)，(40.0，0.0)}
HIGH := {(35.0，0.0)，(50.0，1.0)，(100.0，1.0)}
5) Highly dangerous permission risk.
LOW := {(0.0，0.0)，(8.0，1.0)，(12.0，0.0)}
AVERAGE := {(8.0，0.0)，(20.0，1.0)，(30.0，0.0)}
HIGH := {(25.0，0.0)，(30.0，1.0)，(100.0，0.0)}
6) Comprehensive risk
LOW :=10
AVERAGE :=30
HIGH :=60

Rule base: Included in the rule base, fuzzy rules are in the form of “if-then” (for instance, if
the temperature is above 86 degree, then adjust the air conditioner to cooling mode) and used
to compute output fuzzy functions. The computing process is analyzed qualitatively and
resistant to the change of malicious features that only affect the application feature, i.e. the five
specific kinds of application risk and the comprehensive risk. While the rule base is used to
calculate the comprehensive risk and can be rebuilt due to the change of users’ risk preference
instead of the change of the features of malware. Currently, two categories of rules are used in
our fuzzy logic system. One of them is the independent rule, i.e. there is only one condition in
the rule. Another one is the compound rule with more than one condition. More specifically,
two compound rules are designed. Privacy risk and network connection risk make the first one,
because they are closely related. Privacy risk and money risk make the second one, because
the two are the most concerned types of risk. Table 8 illustrates the results of fuzzy operation
inside a compound rule.

It is worth noting that new fuzzy rules can be added to the rule base to describe the
interaction of various risks in a more fine-grained level and compute fuzzy output functions in
a more fine-grained way. Users can define new fuzzy rules that meet their needs in order to
improve the weight of impact of some type of risk. For example, those who have low bearing
capacity of money risk can increase money risk related fuzzy rules, thereby increasing the
impact of money risk on the value of comprehensive risk. It will in turn improve the weight of
impact of money risk on the classifier, which means money risk will have more weight in
determining whether an unknown sample is benign or malicious.

Table 8. fuzzy matrixes

Risk level/result Low Average High

Low Low Average High

Average Average High High

High High High High

972 Ye et al.: A risk classification based Android malware detection approach

Table 9. one sample of fuzzy rules

RULE BLOCK
AND:MIN;
RULE 1: IF money is low then risk is low;
RULE 1a: IF money risk is average then risk is average;
RULE 1b: IF money risk is high then risk is high;

RULE 2: IF privacy risk is low and connection risk is low, then risk is low;
RULE 2a: IF privacy risk is average and connection risk is low risk is average
RULE 2b: IF privacy risk is average and connection risk is average, then risk is high;
...........

Table 9 shows one sample of fuzzy rules, where the risk represents comprehensive risk. In

our fuzzy logic system, AND operator is used to evaluate fuzzy rules and combine the results
of all the rules. Specifically, the Min operation is used in our system. As shown in Formula (3),
COGS (Centre of Gravity for Singletons) is used to defuzzify the resulting fuzzy outputs.

 1

1

p

i i
i

p

i
i

u v
U

v

=

=

=
∑

∑
 (3)

Where U represents the crisp output, u represents output fuzzy variable, v represents the
membership function after accumulation.

3.3 Classification
We employ Weka [41] to implement machine learning algorithms to detect Android malware
automatically. Our application feature consists of application risks. Five machine learning
algorithms (RandomForest, J48, LibSVM, NaiveBayes, and BayesNet) from different
classifiers are employed in order to select the best one according to the performance. These
algorithms belong to three families, RandomForest and J48 belong to the decision tree
algorithms, and LibSVM is a library for Support Vector Machine algorithm, while
NaiveBayes and BayesNet come from the Bayes algorithms.

4. Evaluation

4.1 Dataset
Our dataset consists of 16,116 benign applications and 14,448 malware samples. The former
were collected from three Android application markets: Appchina [42], Anzhi [43] and
Google Play, the latter were downloaded from VirusShare [44]. The training dataset contains
10,000 benign applications and 5000 malware samples, both of which are randomly chosen
from the raw dataset. The testing dataset includes 3000 benign applications and 3000 malware
samples that are randomly chosen from the rest of the dataset.

We measure True Positive Ratio (TPR), True Negative Ratio (TRN) and accuracy to
evaluate the performance. As shown in Formula (4), TPR represents the proportion of malware
instances that are correctly classified:

TPTPR

TP FN
=

+
 (4)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 973

Where TP is the number of malware samples correctly detected and FN is the number of
malware samples identified as benign apps. As shown in Formula (5), TNR represents the
proportion of benign apps that are correctly classified.

TNTNR

TN FP
=

+
 (5)

Where TN is the number of benign apps correctly detected and FP is the number of benign
apps classified as malware. As shown in Formula (6), accuracy is used to evaluate the overall
performance, it equals the result of the sum of benign and malware instances correctly
identified divided by the whole number of the dataset instances.

TP FNAccuracy

TP FN TN FP
+

=
+ + +

 (6)

4.2 Performance
As stated in section 3.3, we employ NaiveBayes, BayesNet, LibSVM, J48 and RandomForest
to build classifiers. Based on Weka, 10-fold across validation is used to generate classifiers for
every machine learning algorithm. Afterwards, we employ the classifiers to detect the testing
set, and select the best one in each group. Firstly, to evaluate the influences of the risk factor
and malicious trusted probability over each classifier’s performance and determine the
optimum parameters (i.e. risk factor and malicious trusted probability) of the quantitative
calculation model, we conduct twenty experiments where the values of risk factor and
malicious trusted probability are described in section 3.1.

4.2.1. Performance of different risk factors and malicious trusted probabilities
As shown in Fig. 6 (a) (for subscript x_y, x represents risk factor and y represents malicious
trusted probability, i.e. Pmt), when risk factor remains unchanged, performance improves with
the increase of Pmt and achieves the best (accuracy, TPR and TNR is 0.932, 0.925 and 0.939
respectively) when malicious trusted probability equals 0.8. When malicious remains
unchanged, as depicted in Fig. 6 (b), performance gets better with the increase of risk factor
and reaches the top when risk factor equals 0.4. Therefore, for the quantitative calculation
model, we set risk factor to 0.4 and malicious trusted probability to 0.8 for all the following
experiments.

0

0.2

0.4

0.6

0.8

1

0.
1_

0.
6

0.
1_

0.
7

0.
1_

0.
8

0.
1_

0.
9

0.
2_

0.
6

0.
2_

0.
7

0.
2_

0.
8

0.
2_

0.
9

0.
3_

0.
6

0.
3_

0.
7

0.
3_

0.
8

0.
3_

0.
9

0.
4_

0.
6

0.
4_

0.
7

0.
4_

0.
8

0.
4_

0.
9

0.
5_

0.
6

0.
5_

0.
7

0.
5_

0.
8

0.
5_

0.
9

risk factor and malicious trusted probability

TNR

TPR

Accuracy

Fig. 6 (a). performance of different risk factors and malicious trusted probabilities

974 Ye et al.: A risk classification based Android malware detection approach

Fig. 6(b). performance of different risk factors when malicious trusted probability equals 0.8

4.2.2. Performance of different features
To evaluate the influences of different features over the performance, we conducted eight
experiments with different features as shown in Table 10. Money risk and privacy risk are the
two basic types of risk, so they are included in every feature of the experiments. For the sake of
convenience, we use M, P, S, N, H, and C to represent money risk, privacy risk, sensitive
program behavior risk, network connection risk, highly dangerous permission risk and
comprehensive risk respectively.

Table 10. application features
Group Application Feature

1 M, P, C
2 M, P, C, S
3 M, P, C, N
4 M, P, C, H
5 M, P, C, N, S
6 M, P, C, N, H
7 M, P, C, H, S
8 M, P, C, N, S, H

As shown in Fig. 7, accuracy improves with the increase of the number of the risk types in

the feature, and achieves the highest when the feature includes all the six types of risk. This
happens if the number of risk types included in the evaluated feature is too few. There is a
significant deviation between the real feature and the evaluated one, which misleads the
classifiers and results in poor classification. When the number of risk types increases, the
evaluated feature draws close to the real one, which results in sound performance.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 975

Fig. 7. comparison of performance of different features

Fig. 8. comparison of performance of different machine learning algorithms

When there are only four risk types in the evaluated feature, the performance of the
combination of M&P&C&N (or M&P&C&H) outperforms the combination of M&P&C&S,
and when there are five risk types in the evaluated feature, the performance of the combination
of M&P&C&H&N ranks the first. Such phenomenon illustrates that there are distinct
differences in network connection risk and highly dangerous permission risk between benign
apps and malware and the two have high similarities in sensitive program behaviors.

976 Ye et al.: A risk classification based Android malware detection approach

4.2.3. Run-time performance

Fig. 9 (a). relationship between time overhead and the number of function call traces

Fig. 9 (b). relationship between time overhead and the number of permission methods

All experiments are conducted on a machine equipped with Intel (R) Core (TM) i7-410MQ
CPU @ 2.5 GHz processor and 16GB of physical memory. The operating system is Ubuntu
14.04 LTS (64 bit). We use SPSS to analyze the relationship between time overhead and the
number of function call traces. As shown in Fig. 9 (a), the time overhead is in positive
correlation with the number of function call traces. The red line in Fig. 9 (a) represents the
average time overhead (231.18s). While the orange one represents the average number of
function call trace of samples in the dataset, which is 5959.05. The ratio of time overhead to
the number of function call traces is 38.9ms. When the number of function call trace is under
2200, time overhead is within 100s. Fig. 9 (b) depicts the relation between time overhead and
the number of permission methods. It is obvious that the number of permission methods of
most samples ranges from 0 to 300. The red line represents the average number of permission
methods, which is nearly 74.6. And the ratio of time overhead to the number of permission
methods is 3.09s per method.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 977

5. Related work
One important direction in the field of Android malware detection concentrates on the inner
structural information of an app. Similar to pervious work such as [45], [46] and [47], our
approach also focuses on the inner structural information: function call traces of permission
methods. [45] proposed a similarity-based approach, which relied on the similarities among
apps to detect malware. Similarity score between two apps was computed based on their
method similarity represented by NCD distance. While the NCD distance was measured by the
similarity between the control flow graphs of the methods in the two apps. [46] employed code
structures to characterize Android malware families, extracted the control flow graph of every
method in the sample with the help of Androguard, and then applied text mining techniques to
classify different Android malware families. Most similar to our work, the approach proposed
in [47] extracted the function call graph of an app and applied a labeling function to label all
the nodes of the graph by a 15-bit sequence. Afterwards, it calculated the hash-value for a
given node and its direct neighboring nodes using a XOR operation. The hash-value is then
embedded in a vector used by Support Vector Machine to classify Android malware.

Compared with the aforementioned works, our work differs in the following three aspects.
By filtering unrelated methods, our approach only targets the permission methods instead of
all the methods in the APK samples. The function call trace extracted in our approach is
actually a runnable trace, and it contains more context information than control flow graphs (in
[45] and [46]) and hash-values used in [47]. Unlike [47], application risks are considered in
our approach. We classify application risks into five categories and analyze different
application risks in multi-dimensions, which helps improve the performance. More
importantly, the accuracy of our method outperforms the one presented in [47]. As shown in
Table 11, the results of our approach outperform other existing works and have the highest
detection accuracy and the best AUC performance.

Table 11. comparison with existing work

Related work
Number of

samples
(malicious/benign)

TPR TNR Accuracy AUC

Liang et al. [27] 1260/711 0.875 0.835 - -
Sarma et al. [38] 121/158,062 - - - 0.85-0.91
Peng et al. [39] 378/ 482,514 - - - 0.94-0.96
Hugo et al. [47] 12,158/135,792 - - 0.89 -
Our approach 3000/3000 0.925 0.939 0.932 0.983

6. Discussion
In reality, Android malware evolve to avoid detection by changing malicious features
aggressively which results in different forms of function call traces of permission methods.
Our approach outperforms feature-based methods and is resistant to such changes. Based on
the fact that Android malware will always cause security risks to users, it is feasible to detect
them through security risks. As long as Android malware rely on Android permission methods
to conduct malicious behaviors, our method can extract the function call traces of the
permission methods used in the malware and compute the security risks and then judge
whether the application is benign or malicious, regardless of the implementation details of
functions call traces such as adding dummy methods or deleting some unimportant methods.

As a typical static analysis approach, our approach suffers the inherent limitations of static
analysis, and it can be bypassed by techniques such as Java reflection, dynamic loading,

978 Ye et al.: A risk classification based Android malware detection approach

obfuscation etc. To alleviate the problem, we employ sensitive program behavior risk to
indicate the risk brought by sensitive program behaviors. As our method needs to traverse the
function call graph of a given sample to extract function call traces, it is more time-consuming
compared with some existing work. But every approach has to achieve a balance between
efficiency and performance. For our method, as an off-line detection approach, accuracy is
more important and it is acceptable that the average detection time is at the level of minute.

 7. Conclusion and Future work
In this paper, we have presented a risk-based approach for detecting Android malware. Based
on the observation that the main differences between benign applications and Android
malware root in the way how Android permissions are used, we extract the function call traces
of permission methods to describe how an application utilizes user-granted permissions. After
calculating application risks, machine learning algorithms are applied to detect Android
malware.

We classify Android application risks into money risk, privacy risk, network connection
risk, highly dangerous permission risk, sensitive behavior risk and introduce comprehensive
risk to describe the overall risk of an application based on the former five, and present a
quantitative calculation mode and a fuzzy logic system to calculate the comprehensive risk.
All risk categories are embedded in a feature vector, and five machine learning algorithms are
employed to automatically detect Android malware. The results show that our scheme is
capable of detecting Android malware at a satisfying accuracy rate.

For future work, we plan to optimize the algorithm of extracting function call trace to reduce
the time overhead. Furthermore, to improve detection rate, we are going to conduct a hybrid
Android malware analysis, i.e. combine static analysis and dynamic analysis, to solve the
problems entangled with static approaches.

References
[1] IDC: Smar tp ho ne OS Market share 2015 ,http://www.idc.com/prodserv/smartphone-os-

market-share.jsp
[2] 360: mobile phone security situation report 2014, http://www.199it.com/archives/325900.html
[3] Wei X, Gomez L, Neamtiu I. and Faloutsos M., “Permission evolution in the Android ecosystem,”

in Proc. of Computer Security Applications Conference, 31-40, 2012. Article(CrossRefLink)
[4] Au K W Y, Zhou Y F, Huang Z, Lie D., “PScout: analyzing the Android permission specification,”

in Proc. of the 2012 ACM conference on Computer and communications security. ACM, 217-228,
2012. Article(CrossRefLink)

[5] Barrera D, Kayacik, H. G, Van Oorschot P C and Somayaji A., “A methodology for empirical
analysis of permission-based security models and its application to android,” in Proc. of ACM
Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA,
October. 73-84, 2010. Article(CrossRefLink)

[6] Johnson R, Wang Z, Gagnon C and Stavrou, “A. Analysis of Android Applications’ Permissions,”
in Proc. of IEEE Sixth International Conference on Software Security and Reliability Companion.
45-46, 2012. Article(CrossRefLink)

[7] Felt A P, Chin E, Hanna S, Song D and Wagner D., “Android permissions demystified,” in Proc. of
ACM Conference on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA,
October. 627-638, 2011. Article(CrossRefLink)

[8] Nauman M, Khan S, Zhang X., “Apex: Extending Android Permission Model and Enforcement
with User-defined Runtime Constraints,” in Proc. of ACM Symposium on Information, Computer
and Communications Security, ASIACCS 2010, Beijing, China, April. 328-332, 2010.
Article(CrossRefLink)

https://doi.org/10.1145/2420950.2420956
https://doi.org/10.1145/2382196.2382222
http://dl.acm.org/citation.cfm?id=1866317
https://doi.org/10.1109/SERE-C.2012.44
http://dl.acm.org/citation.cfm?id=2046779
http://dl.acm.org/citation.cfm?id=1755732

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 979

[9] Ongtang M, Mclaughlin S, Enck W and McDaniel P., “Semantically Rich Application-Centric
Security in Android,” Security & Communication Networks, 5(6):658-673, 2009.
Article(CrossRefLink)

[10] Felt A P, Wang H J, Moshchuk A, Hanna S and Chin E., “Permission re-delegation: attacks and
defenses,” Usenix Conference on Security. USENIX Association, 22-22, 2011.
Article(CrossRefLink)

[11] Dietz M, Shekhar S, Pisetsky Y, Shu A and Wallach DS., “Quire: lightweight provenance for smart
phone operating systems,” Dissertations & Theses, 23-23, 2011. Article(CrossRefLink)

[12] Bugiel S, Davi L, Dmitrienko A, Fischer T and Sadeghi AR., “XManAndroid: A new Android
evolution to mitigate privilege escalation attacks,” Technical Report, Technische Universität
Darmstadt, TR-2011-04, 2011. Article(CrossRefLink)

[13] Conti M, Nguyen V T N, Crispo B., “CRePE: Context-Related Policy Enforcement for Android,”
in Proc. of Information Security, International Conference, ISC 2010, Boca Raton, Fl, Usa,
October 25-28, 2010, Revised Selected Papers. 331-345, 2010. Article(CrossRefLink)

[14] Zhou Y, Zhang X, Jiang X and Freeh W V., “Taming Information-Stealing Smartphone
Applications (on Android),” in Proc. of Trust and Trustworthy Computing International
Conference, Trust 2011, Pittsburgh, Pa, Usa, June 22-24, 2011. Proceedings. 93-107, 2011.
Article(CrossRefLink)

[15] Sakamoto S, Okuda K, Nakatsuka R and Yamauchi T., “DroidTrack: tracking and visualizing
information diffusion for preventing information leakage on Android,” Journal of Internet
Services and Information Security (JISIS) 4.2, 55-69, 2014. Article(CrossRefLink)

[16] Nauman M, Khan S, Zhang X and Seifert JP, “Beyond Kernel-Level Integrity Measurement:
Enabling Remote Attestation for the Android Platform,” in Proc. of Trust and Trustworthy
Computing, Third International Conference, TRUST 2010, Berlin, Germany, June 21-23, 2010.
Article(CrossRefLink)

[17] Song F, Touili T., “Model-Checking for Android Malware Detection,” Programming Languages
and Systems. Springer International Publishing, 216-235, 2014. Article(CrossRefLink)

[18] Reina A, Fattori A, Cavallaro L., “A System Call-Centric Analysis and Stimulation Technique to
Automatically Reconstruct Android Malware Behaviors,” Eurosec, 2014. Article(CrossRefLink)

[19] Zhang Y, Yang M, Xu B, Yang Z and Gu G., “Vetting undesirable behaviors in android apps with
permission use analysis,” Computer and Communications Security, 9:611-622, 2013.
Article(CrossRefLink)

[20] Lindorfer M, Neugschwandtner M, Weichselbaum L and Fratantonio Y, “ANDRUBIS --
1,000,000 Apps Later: A View on Current Android Malware Behaviors,” in Proc. of Third
International Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security, IEEE Computer Society, 3-17, 2014. Article(CrossRefLink)

[21] Enck W, Gilbert P, Chun B-G, McDaniel P, Sheth A., “TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones,” ACM Transactions on Computer
Systems, 32(2):393-407, 2014. Article(CrossRefLink)

[22] Droidbox, http:code.google.com/p/droidbox.
[23] Yan, Lok-Kwong, and Heng Yin, “DroidScope: Seamlessly Reconstructing the OS and Dalvik

Semantic Views for Dynamic Android Malware Analysis,” USENIX security symposium. 2012.
Article(CrossRefLink)

[24] Rastogi V, Chen Y, Enck W., “AppsPlayground: automatic security analysis of smartphone
applications,” in Proc. of ACM Conference on Data and Application Security and Privacy.
209-220, 2013. Article(CrossRefLink)

[25] Sun, Mingshen, J. C. S. Lui and X. Jiang, “Design and implementation of an Android host-based
intrusion prevention system,” in Proc. of the 30th Annual Computer Security Applications
Conference. ACM, pp.226-235, 2014. Article(CrossRefLink)

[26] Bläsing T, Batyuk L, Schmidt A D, Camtepe SA., “An Android Application Sandbox system for
suspicious software detection,” in Proc. of International Conference on Malicious and Unwanted
Software. IEEE, S166, 2010. Article(CrossRefLink)

https://doi.org/10.1002/sec.360
http://dl.acm.org/citation.cfm?doid=2046707.2046779
http://dl.acm.org/citation.cfm?id=2028090
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=4CEE556DC4A18953DEDA510D10FC7033?doi=10.1.1.673.2057
http://link.springer.com/chapter/10.1007/978-3-642-18178-8_29
http://link.springer.com/chapter/10.1007/978-3-642-21599-5_7
https://doi.org/10.1007/978-94-007-6738-6_31
http://dl.acm.org/citation.cfm?id=2450430
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.705.7712
https://doi.org/10.1145/2508859.2516689
https://doi.org/10.1109/badgers.2014.7
https://doi.org/10.1145/2619091
http://dl.acm.org/citation.cfm?id=2362822
https://doi.org/10.1145/2435349.2435379
http://dl.acm.org/citation.cfm?id=2664245
https://doi.org/10.1109/malware.2010.5665792

980 Ye et al.: A risk classification based Android malware detection approach

[27] Enck W, Ongtang M and Mcdaniel P, “On lightweight mobile phone application certification,”
Computer and Communications Security, 2009. Article(CrossRefLink)

[28] Liang, Shuang, and Xiaojiang Du, "Permission-combination-based scheme for Android mobile
malware detection," in Proc. of the 2014 IEEE International Conference on Communications,
Sidney, Australia, pp. 2301-2306, June 2014. Article(CrossRefLink)

[29] Zhou, W., Zhou, Y., Jiang X. and Ning, P., “DroidMoss: Detecting repackaged smartphone
applications in third-party Android marketplaces,” in Proc. of the second ACM conference on Data
and Application Security and Privacy, CODASPY’12, 2012. Article(CrossRefLink)

[30] Feng Y, Anand S, Dillig I, Aiken A., “Apposcopy: semantics-based detection of Android malware
through static analysis,” The ACM Sigsoft International Symposium, 576-587, 2014.
Article(CrossRefLink)

[31] Grace M, Zhou Y, Zhang Q, Zou S and Jiang X., “RiskRanker: scalable and accurate zero-day
android malware detection,” in Proc. of International Conference on Mobile Systems, Applications,
and Services. ACM, 281-294, 2012. Article(CrossRefLink)

[32] Zhou Y, Wang Z, Zhou W and Jiang X., “Hey, You, Get Off of My Market: Detecting Malicious
Apps in Official and Alternative Android Markets,” in Proc. of Annual Network & Distributed
System Security Symposium, 2012. Article(CrossRefLink)

[33] Yuan Z, Lu Y, Wang Z, Xue Y., “Droid-Sec: deep learning in android malware detection,” ACM
Sigcomm Computer Communication Review, 44(4):371-372, 2014. Article(CrossRefLink)

[34] Aafer Y, Du W and Yin H., “DroidAPIMiner: Mining API-Level Features for Robust Malware
Detection in Android,” Security and Privacy in Communication Networks. Springer International
Publishing, 86-103, 2013. Article(CrossRefLink)

[35] Arp D, Gascon H, Rieck K, Spreitzenbarth M and Hübner M., “DREBIN: Effective and
Explainable Detection of Android Malware in Your Pocket,” Network and Distributed System
Security Symposium. 2014. Article(CrossRefLink)

[36] Androguard. https://code.google.com/p/androguard/.
[37] Cesare S, Xiang Y., “Classification of malware using structured control flow,” Eighth

Australasian Symposium on Parallel and Distributed Computing. Australian Computer Society,
Inc. 61-70, 2010. Article(CrossRefLink)

[38] Sarma B P, Li N, Gates C, Potharaju R and Nita-Rotaru C., “Android permissions: A perspective
combining risks and benefits,” in Proc. of Acm Symposium on Access Control Models &
Technologies Ser Sacmat ’, 13-22, 2012. Article(CrossRefLink)

[39] Peng H, Gates C, Sarma B, Li N and Qi Y., “Using probabilistic generative models for ranking
risks of Android apps,” in Proc. of Conference on Computer and Communications Security.
241-252, 2012. Article(CrossRefLink)

[40] Driankov, Dimiter, Hans Hellendoorn, and Michael Reinfrank, “An introduction to fuzzy control,”
Springer Science & Business Media, 2013. Article(CrossRefLink)

[41] Weka, http://www.cs.waikato.ac.nz/ml/weka.
[42] Appchina, http://www.appchina.com.
[43] Anzhi, http://www.anzhi.com.
[44] Virus share, http://www.virusshare.com .
[45] Hassana, Doaa, Matthew Might, and Vivek Srikumar, “A Similarity-Based Machine Learning

Approach for Detecting Adversarial Android Malware,” Technical report UUCS-14-002, School
of Computing, University of Utah, 2014. Article(CrossRefLink)

[46] Suarez-Tangil G, Tapiador J E, Peris-Lopez P, Blasco J., “Dendroid : A text mining approach to
analyzing and classifying code structures in Android malware families,” Expert Systems with
Applications, 41(4):1104-1117, 2013. Article(CrossRefLink)

[47] Gascon H, Yamaguchi F, Arp D and Rieck K., “Structural detection of android malware using
embedded call graphs,” in Proc. of ACM Workshop on Security and Artificial Intelligence. 45-54,
2013. Article(CrossRefLink)

https://doi.org/10.1145/1653662.1653691
https://doi.org/10.1109/ICC.2014.6883666
http://dl.acm.org/citation.cfm?doid=2133601.2133640
https://doi.org/10.1145/2635868.2635869
https://doi.org/10.1145/2307636.2307663
http://dl.acm.org/citation.cfm?id=2133640
https://doi.org/10.1145/2740070.2631434
http://link.springer.com/chapter/10.1007/978-3-319-04283-1_6
https://doi.org/10.14722/ndss.2014.23247
http://dl.acm.org/citation.cfm?id=1862301
https://doi.org/10.1145/2295136.2295141
https://doi.org/10.1145/2382196.2382224
http://link.springer.com/book/10.1007%2F978-3-662-03284-8
http://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.699.5162
https://doi.org/10.1016/j.eswa.2013.07.106
https://doi.org/10.1145/2517312.2517315

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 981

Yi-lin Ye was born in Jiujiang, Jiangxi, China in 1987. Now he is a Ph.D. candidate in
the university. His research interests include information security and cloud security.

Li-fa Wu was born in Qichun, Hubei, China in 1968. He received his Ph.D. from
Nanjing University in 1998. He is currently a professor in PLA University of Science and
Technology. His research fields concern network security, protocol engineering and
satellite communication.

Zheng Hong was born in Yingtan, Jiangxi, China in 1979. He received his Ph.D. from
PLA University of Science and Technology in 2007. Now he is an associate professor in
the university. His research fields concern network security and protocol reverse
engineering.

Kang-yu Huang was born in Yichuan, Jiangxi, Chian in 1985. He received his received
M.S degree in network engineering from PLA University of Science and Technology in
2009. His research fields concern network security.

