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Abstract 
 

Existing Android malware detection approaches mostly have concentrated on superficial 
features such as requested or used permissions, which can’t reflect the essential differences 
between benign apps and malware. In this paper, we propose a quantitative calculation model 
of application risks based on the key observation that the essential differences between benign 
apps and malware actually lie in the way how permissions are used, or rather the way how their 
corresponding permission methods are used. Specifically, we employ a fine-grained analysis 
on Android application risks. We firstly classify application risks into five specific categories 
and then introduce comprehensive risk, which is computed based on the former five, to 
describe the overall risk of an application. Given that users’ risk preference and risk-bearing 
ability are naturally fuzzy, we design and implement a fuzzy logic system to calculate the 
comprehensive risk. On the basis of the quantitative calculation model, we propose a risk 
classification based approach for Android malware detection. The experiments show that our 
approach can achieve high accuracy with a low false positive rate using the RandomForest 
algorithm. 
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1. Introduction 

Recently, A market report [1] released by IDC shows that Android holds about 82.8% of the 
mobile system market share  during the last quarter. Due to its overwhelming market share and 
a great number of users, Android has become the most popular platform of malicious attackers. 
Driven by economical interest, there is a boost in the number of malware, spywares in Android 
mobile markets. As showed in [2], 3.26 million Android malware have been dectectd in 2014, 
compared with the number of Android malware a year ago, the number increased nearly 386%. 
While the number of affected users reached 319 million, it increased 517% compared with the 
number of the affected users last year. 

Plenty of research has been made to alleviate the increasing threat to Android system 
brought by malware. One of the hot directions is Android permission analysis [3][4][5][6][7], 
where researchers have presented lots of work on Android system security enhancement 
[8][9][10][11][12][13][14] and malware detection [15][16][17]. According to the techniques 
employed, Android malware detection approaches can be classified into static analysis and 
dynamic analysis. Dynamic analysis captures what the sample has done during the evaluation, 
and relies on runtime behaviors to judge whether the sample is malicious or not. The down 
side of dynamic analysis is that it suffers from a big system overhead and inefficient path 
coverage, which causes false positives. 

Reina et al. presented CopperDroid [18] to monitor the inner IPC and RPC communication 
of Android applications and capture runtime system calls to reconstruct application behaviors. 
VetDroid [19] concentrated on used permissions of an app, and only captured the system calls 
related to used permissions. Andrubis [20] applied static analysis to extract static features, and 
applied dynamic analysis to reconstruct runtime behaviors. Andrubis then combined static 
features and run-time behaviors to detect Android malware. There are other typical approaches 
based on dynamic analysis such as [21][22][23][24][25][26]. 

Compared with dynamic analysis, static analysis focuses on source code instead of runtime 
behavior. It is a lightweight technique that consumes relatively less system resources and 
achieves high path coverage, but it can be evaded by techniques such as obfuscation and 
dynamic loading. 

Among all the schemes based on static analysis, permission-based schemes concentrate on 
requested permissions. Kirin [27] detected Android malware based on dangerous permission 
combinations or suspicious action strings. The approach presented in [28] extended Kirin by 
increasing the number of permissions to define more permission combinations. As there are 
few differences in requested or used permissions between benign apps and malware, 
permission-based approaches suffer the problem of low detection rate. 

To overcome the shortcomings of permission-based approaches, multi-category feature 
based approaches [29][30][31][32][33] were proposed, which extracted many other static 
features besides permissions. DroidAPIMiner [34] conducted frequency analysis and data 
flow analysis to all APIs used in an app to acquire most frequently used APIs and their 
parameters. Drebin [35] conducted a broad static analysis to extract the application features 
containing permissions, application components, sensitive APIs, network addresses, strings 
and so on. Though more features are extracted to overcome the disadvantages of 
permission-based approaches, multi-category feature based approaches still suffered the 
problem that the features extracted can’t reflect the key differences between malicious apps 
and benign apps. 
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After analyzing over 30,000 samples, we found that the superficial features (e.g. requested 
or used permissions, sensitive APIs, filtered intents) of the two types of apps showed high 
similarities. Naturally, it will end in relatively high false positives and false negatives if we 
rely on superficial features to detect Android malware. 

In this paper, we aim to overcome the shortcomings of current static analysis based methods. 
Based on the key observation that the essential differences between malicious apps and benign 
apps are rooted in the way they use the permissions granted by the users, we concentrate on 
how requested permissions are used in an app. As Android system maps application 
permissions to different permission methods in the Framework layer, we can employ 
permission methods to describe how the corresponding permissions are used, and we propose 
the notion of function call trace which represents an ordered sequence of methods 
corresponding to different nodes on an execution path of an app’s function call graph. 

Based on the above analysis, we have designed a quantitative calculation model of 
application risks, and proposed a novel Android malware detection approach on the basis of 
risk classification. Specifically, we classify application risks into five types of specific risk 
(money risk, privacy risk, network connection risk, highly dangerous permission risk and 
sensitive program behavior risk), and propose comprehensive risk to evaluate the overall risk 
of an Android application. The comprehensive risk is computed based on the former five. As 
risk preference and risk-bearing ability of the users are naturally fuzzy, we introduce fuzzy 
logic to calculate comprehensive risk.  

In summary, the main contributions of our work are listed as follows. 
 To overcome the disadvantages of existing static analysis based approaches that the 

used features are not effective to distinguish malware from benign Android 
applications, we choose the way how permissions are used as the basic distinguishing 
feature, and it is described by the function call traces corresponding to permission 
methods. We present a risk classification based approach for Android malware 
detection, which can achieve 93.2% detection accuracy. 

 We employ a fine-grained analysis on Android application risks, and propose a 
quantitative calculation model of application risks. 

 We implement a fuzzy logic system to compute the overall application risk, which is 
fuzzy due to the fact that users differ in risk preference and risk tolerance. 

The remainder of this paper is organized as follows: Section 2 illustrates the motivation of 
this paper. Section 3 describes our method in details. After that, experiments and result 
analysis are presented in section 4. Related work and limitations are discussed in section 5 and 
section 6. Section 7 concludes the paper and proposes future work. 

 

2. Motivation 
 
After analyzing over 30,000 samples (discussed in section 4.1), we  discovered that benign 
apps and malicious apps show high similarity among superficial features, such as requested 
and used permissions, broadcast events, sensitive program behaviors. Fig. 1 (a) and Fig. 1 (b) 
depict the comparison of frequency between requested and used permissions of benign apps 
and malicious apps respectively. As shown in both figures, the frequency of requested 
permissions are higher than used permissions, indicating that many Android applications are 
actually over-privileged, which would lower the accuracy of approaches based on requested 
permissions. 
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Fig. 1(a). comparison of requested and used frequency of the top 20 permissions of benign apps 

 

 
Fig. 1(b). comparison of requested and used frequency of the top 20 permissions of malware 

 

 
Fig. 1(c). differences of requested and used permissions between benign apps and malware 

 
Fig. 1(c) depicts the frequency differences of requested and used permissions between 

benign apps and malware. The average frequency difference of requested permissions is 0.09, 
while that of used permissions is 0.11, indicating there are no obvious differences regarding 
permissions (requested or used) between the two app types. Fig. 2 (a) and Fig. 2 (b) show the 
top 20 registered broadcast events in benign apps and malware respectively. Among the events, 
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the overlap ratio is nearly 0.65. For the overlapped events, as shown in Fig.2 (c), the average 
difference is less than 0.07. As shown in Fig. 3, there are few differences in frequency of 
sensitive program behaviors shown up in the two app types. The frequency differences of the 
four sensitive program behaviors are all within 0.1. 

 

 
Fig. 2(a). top 20 registered broadcast events in benign apps 

 

 
Fig. 2(b). top 20 registered broadcast events in malware 

 

 
Fig. 2(c). frequency difference of registered broadcast events between benign apps and malware 

 
As shown in the above figures, we can draw the conclusion that there is no distinguishable 

difference in superficial features between benign apps and malicious apps Therefore it is not 
desirable to employ superficial features to detect Android malware.  However, benign apps 
and malicious apps behave quite differently. The root cause is how permissions granted by the 
users are used in the apps. All operations that may potentially do harm to the users’ benefit 
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(financial interest, user privacy or system security) are under the protection of application 
permissions in Android system. Only after being granted corresponding permissions can an 
application access sensitive data or carry out dangerous operations. Benign applications 
usually use permissions in a way that won’t go against the interests of the users; On the 
contrary, malware usually intentionally use permissions in a way that will harm users’ benefit. 
Thus, it is reasonable to detect Android malware by how Android application permissions are 
used. From such a perspective, we propose our risk classification based Android malware 
detection approach. 

 

 
Fig. 3. comparison of frequency of sensitive program behaviors between benign apps and malware 

3. Methodology 
Our method tries to detect malicious Android applications by quantitative analysis. 
Specifically, Android application risks are classified into the following five specific categories: 
money risk, privacy risk, sensitive program behavior risk, network connection risk, highly 
dangerous permission risk. To describe the overall risk of an application, comprehensive risk 
is proposed and computed based on the former five. We implement a quantitative calculation 
model to compute application risks and employ the result as the application feature. We then 
apply machine learning algorithms to detect malware automatically. 
 

Classification

Function 
Call 
Trace

Application
 Feature

Predicted 
Category

Application 
Risks

Classified Risks

Comprehensive 
Risk

Samples
Quantitative Calculation Model of Risk

Fuzzy Logic 
System

Classified Risks

Classified Risk 
Calculation Module

Sample 
Analysis
 Module

Fig. 4. workflow of our approach 
 

As shown in Fig. 4, our method consists of three phases. In the beginning, we analyze all the 
samples to extract function call traces corresponding to permission methods that belong to 
used permissions. Afterwards, application risks used as application feature are computed by 
the quantitative calculation model. During the last phase, the application feature is fed to the 
selected machine learning algorithms to build the classifiers that will classify the samples. 
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3.1 Feature extraction 
As Android application permissions are mapped to specific permission methods which can be 
used to describe how permissions are used. Specifically, we use function call traces of 
permission methods to represent how permissions are used in a certain app. Function call 
traces are automatically extracted through Python scripts that utilize core APIs provided by 
Androguard [36], and the APIs are modified to meet our needs. 

Firstly, we analyze the APK file to extract global package information and filter all public 
available ad packages which can be assumed security unrelated. After that, the dex file in the 
APK file  is  decompiled into smail files, which are analyzed to extract used permissions and 
the function call graph of the application. Using the mapping relationship between permissions 
and permission methods provided by PScout[4], we mark all permission methods in the 
function call graph. Afterwards, we traverse the function call graph to extract the path that 
contains any marked nodes. Finally, we combine all the nodes on the path as a function call 
trace. Usually, one permission method has multiple function call traces, only parts of them are 
malicious. To filter security unrelated function call traces, we choose only the traces that 
satisfy either of the following two conditions. 

1) Condition 1 
As shown in Table 1, a single highly risky permission can cause security risks to users 

without the cooperation of any other permission. The corresponding function call traces are 
extracted directly. 
 

Table 1. highly risky permissions 
Permission Risk 

CALL_PHONE 
Allows an application to initiate a phone call 

without going through the Dialer user interface 
for the user to confirm the call being placed 

CALL_PRIVILEGED 
Allows an application to call any phone number, 
without going through the Dialer user interface 

for the user to confirm the call being placed. 

INSTALL_PACKAGES Allows an application to install packages 

KILL_BACKGROUND_PROCESSES Allows an application to kill background process 

SEND_SMS_NO_CONFIRMATION Allows an app to send SMS messages without 
user input or confirmation 

SET_DEBUG_APP Configures an application for debugging 

PROCESS_OUTGOING_CALLS Allows an app to intercept outgoing calls 

2) Condition 2 
In some cases, there are two or more permissions involved in a function call trace, i.e. there 

are at least two permission methods corresponding to two different permissions in a function 
call trace. In such cases, only when the combination of those corresponding permissions is of 
high risk should the function call trace be extracted. Existing permission-based approaches 
such as [27] [28] use permission combinations to detect Android malware. To determine 
whether a combination of permissions is risky, a conservative strategy is adopted to ensure 
that all security related function call traces are extracted. We extend the union of the 
permission combinations proposed in [27] and [28] (when k equals 5). The combinations used 
in our approach are shown in Table 2. 
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Table 2.  risky permission combinations 
Permission combination Risk 

ACCESS_FINE_LOCATION, INTERNT Fine-grained location can be leaked through 
internet 

ACCESS_FINE_LOCATION, SEND_SMS Fine-grained location can be leaked by sending 
SMS messages 

ACCESS_COARSE_LOCATION, INTERNT coarse-grained location can be leaked through 
internet 

ACCESS_COARSE_LOCATION, SEND_SMS coarse-grained location can be leaked by sending 
SMS messages 

INSTALL_SHORTCUT, 
UNINSTALL_SHORTCUT 

Allows malicious app redirect its shortcut to other 
benign apps 

READ_CONTACTS,INTERNET Contacts can be leaked through internet 

READ_CONTACTS,SEND_SMS Contacts can be leaked by sending SMS messages 

RECEIVE_SMS, WRITE_SMS Allows the malware to remove traces of its 
activity 

RECORD_AUDIO, INTERNET The recorded audio can be leaked through internet 

RECORD_AUDIO, SEND_MMS The recorded audio can be leaked by sending 
multimedia messages. 

 
Function call traces are converted into strings using the approach proposed in [37]. We 

classify all the strings into three categories: setbenign (set of normal function call traces that only 
show up in benign apps), setmalicious (set of malicious function call traces that only show up in 
malware), setintersection (set of function call traces that show up in the two types of apps 
simultaneously). Due to the length of a function call trace varies with the number and size of 
methods in it, we calculate its MD5 for the sake of convenience.  

Meanwhile, we use riskbenign, riskmalicious, and riskintersection to represent the risk factors of the 
three sets respectively. Specifically, we assign 0 to riskbenign, for the reason that it is impossible 
for a function call trace that only shows up in benign applications to be malicious. We assign 1 
to riskmalicious, for the reason that it is of high probability that a function call trace is malicious if 
it only shows up in malware. When it comes to setintersection, it is reasonable to believe that its 
risk factor (for simplicity, we will use rf to represent risk factor in the rest of the paper) should 
be lower than 0.5. To determine the best value that achieves the highest accuracy, we consider 
the following five values: 0.1, 0.2, 0.3, 0.4 and 0.5, and will analyze the influences of different 
riskintersection on detection performance in section 4.3. 

Setmalicious  may contain some normal function call traces when using rule 2. To eliminate the 
interference of normal function call traces, we define malicious trusted probability (for 
convenience, we will use Pmt to represent malicious trusted probability in the rest of the paper) 
to represent the probability of a function call trace to be malicious. Specifically, we consider 
the following four cases: 0.6, 0.7, 0.8 and 0.9, and will analyze the influences of different Pmt 
on detection performance in section 4.3. 

3.2 Quantitative calculation model 
Some researchers attempt to detect Android malware from the perspective of Android 
application risks. Sarma et al. [38] detected Android malware based on the observation that 
apps in the same category request similar permissions and one app is highly suspicious if it 
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applies the permissions barely applied by other apps of the same category. Specifically, they 
selected 26 permissions, and defined Rare Critical Permissions and Rare Pairs of Critical 
Permissions to calculate the risk of an app. In [39], Peng et al. proposed Probabilistic 
Generative Model for risk scoring, and they applied the Bayes model to calculate the 
generative probability of an app through the probabilities of each requested permission. 
Afterwards, the generative probability was converted to a risk score by the risk scoring 
function. At last, it was judged by the rank of risk score which measured whether an app was 
risky or not. For instance, an app will be highly risky if its risk score ranks in top 1%. 

As discussed earlier, the differences of the requested permissions between benign apps and 
malware are tiny, while the basis of the two above approaches are requested permissions, so 
the two approaches are  deficient inherently. Another limitation of the approaches is that as 
none of them analyze the categories of application risks in a detailed way, their results carry 
limited information, and can’t tell what threat an Android application may cause (financial 
losses, leakage of user privacy, or damage to the system security). To solve such problems, we 
implement a detailed analysis of application risks and propose a risk classification based 
approach. 

3.2.1 Risk classification 
Five specific types of risk are closely associate with used permissions or sensitive program 
behaviors, while the comprehensive risk is associate with the five types of specific risk. In this 
section, we firstly describe the details how we classify application risks. Then we present the 
quantitative calculation model, and propose  an approach to compute the comprehensive risk. 

1. Money risk 
Money risk refers to the potential financial losses caused by the use of money –sensitive 

permissions. These permissions are listed in Table 3. 
 

Table 3. money risk related permissions 
Permission Risk level Risk 

CALL_PRIVILEGED High Allows an app to call privileged numbers 
CALL_PHONE Average Allows an app to directly call phone numbers 

INTERNET Low Allows an app to connect to the internet 
SEND_SMS Average Allows an app to send SMS messages 

SEND_SMS_NO_CONFIRMATION High Allows an app to send SMS messages 
without user input or confirmation 

SEND_MMS Average Allows an app to send MMS messages 
PROCESS_OUTGOING_CALLS Average Allows an app to intercept outgoing calls 

USE_SIP Average Allows an app to make/ receive Internet calls 
 

2. Privacy risk  
Privacy risk refers to potential leakage of user privacy caused by the use of 

privacy-sensitive permissions, which are listed in Table 4. 
 

Table 4. privacy risk related permissions 
Permission Risk level Risk  

ACCESS_FINE_LOCATION High Allows an app to access to fine-grained 
location 

ACCESS_COARSE_LOCATION Average Allows an app to access to coarse-grained 
location 
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GET_ACCOUNTS Average Allows an app to access to all accounts of 
the device 

READ_SMS High Allows an app to read SMS messages 
RECEIVE_SMS High Allows an app to receive SMS messages 
RECEIVE_MMS High Allows an app to receive MMS messages 

READ_CONTACTS High Allows an app to read all the contacts on the 
device 

READ_CALENDAR High Allows an app to read calendar events 
READ_CALL_LOG High Allows an app to read the user’s call log 

READ_EXTERNAL_STORAGE Average Allows an application to read from external 
storage 

READ_HISTORY_BOOKMARKS Average Allows an app to read user’s Browser 
history and bookmarks 

READ_PROFILE High Allows an app to read the user’s personal 
profile data 

RECORD_AUDIO High Allows an app to record audio 
READ_USER_DICTIONARY Low Allows an app to read the user’s dictionary 

RECEIVE_WAP_PUSH Average Allows an app to receive WAP messages 
 

3. Network connection risk 
Complementary to privacy risk, network connection risk refers to the potential privacy risk 

when the device connects to other devices or networks. There are four main tunnels through 
which user privacy may be leaked. As shown in Table 5, they are Internet, Bluetooth, SMS 
and NFC respectively. 
 

Table 5. network connection risk related permissions 
Permission Risk level Risk 

BLUETOOTH Average Allows an app to create Bluetooth connections 
INTERNET High Allows an app to connect to the internet 

NFC Average Allows an app to create NFC connections 
SEND_SMS High Allows an app to send SMS messages  
 

4. Highly dangerous permission risk 
Highly dangerous permission risk refers to the potential risk caused by the use of risky 

permissions. Besides the permissions associated with the above three types of risk, highly 
dangerous permissions include all permissions whose risk level is dangerous or above. For 
instance, the permission WRITE_SECURE_SETTINGS is highly risky because it allows an 
app to modify system security configuration. 

5. Sensitive program behavior risk 
Android malware usually apply techniques such as native code, dynamic loading, Java 

reflection and code encryption to thwart static detection. Unfortunately, there are no 
corresponding permissions mapped to those sensitive program behaviors. Therefore, we 
propose sensitive program behavior risk to indicate the potential threat caused by these 
sensitive program behaviors. 

6. Comprehensive risk 
Comprehensive risk refers to the overall risk. It is a fuzzy variable and its value differs with 

risk preference and risk-bearing ability of the users. 
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3.2.2. Risk Calculation 
The value of classified risk is computed by Formula (1), it equals the sum of risk values of all 
the used permissions of an app. The risk value of a single permission is the sum of risk values 
of function call traces of all permission methods corresponding to that permission. While the 
risk value of a single function call trace equals the product of risk factor, malicious trusted 
probability, the harmonic factor of function call trace and the unit risk value of its 
corresponding classified risk. 
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= ∗ ∗ ∗∑∑                                           (1) 

Where {i, j, l |i∈Perm, j ∈Ctracei, l=len(Ctracei)}, Perm represents the set of used 
permissions, Ctracei represents the set of function call traces of permission i, while l is the 
number of Ctracei. 

In Formula (1), rf represents the risk factor, c represents the unit risk value corresponding to 
the permission. The unit risk value of all five types of classified risk is defined in Table 6. It 
depends on the category of risk and the risk level of the permission. Pmt represents the 
malicious trusted probability, and h represents the harmonic factor, which is computed by 
Formula (2). 
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Where N represents the average number of function call sequences of the permission，i 
represents the i th sequence of the permission. 

The reason that we define a harmonic factor is to weaken the correlation between the 
number of function call traces and the classified risk. As the value of classified risk is positive 
correlated to the number of function call traces, it favors large samples which results in such a 
phenomenon: the larger the traces, the greater value of classified risks. Without the harmonic 
factor, in some cases, the classified risk value of a benign app may be greater than that of a 
malware, which is undoubtedly unreasonable. Thus, we present the harmonic factor. As shown 
in Formula (2), we use the square root of i subtracting N as the denominator to compute the 
harmonic factor when i is greater than N. It should be noted that we have considered the 
logarithm (base to 2, e and 10) and the linear function but found that the quadratic function do 
a better job than the other two.  

As illustrated in Table 6, there is only one risk level (and one unit risk value) defined for 
sensitive program behavior risk and highly dangerous permission risk. The method of 
calculating the risk values of the two is to multiply the unit risk value and the number of 
sensitive program behaviors or highly dangerous permissions. 
 

Table 6. unit risk value of classified risk 
Category Risk level Unit risk value 

Money risk 
High 5 

Average 3 
low 1 

Privacy risk 
High 4 

Average 2 
low 1 

Network connection risk High 3 
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Average 2 
low 1 

Highly dangerous risk Average 3 

Sensitive program behavior risk Average 3 

3.2.3. Fuzzy logic system 
As discussed earlier, comprehensive risk is a fuzzy notion whose value varies among different 
users. For some users, an app is of low risk, while some others may consider it highly risky. 
For the users that care more about money risk, high privacy risk may be tolerable. For the users 
that pay more attention to privacy security, high money risk may be acceptable. Inspired by 
[36], we have designed and implemented a fuzzy logic system to compute the comprehensive 
risk. 

Typically, as shown in Fig. 5, a fuzzy logic system consists of three phases: fuzzification, 
interference and defuzzification. During the fuzzification phase, a crisp set of input data is 
transformed to a fuzzy set using fuzzy linguistic variables, fuzzy linguistic terms, and 
membership functions of fuzzy input variables. During the inference phase, an inference is 
made according to a set of fuzzy rules. During the last phase, the resulting fuzzy output is 
mapped to a crisp output using the membership functions of the pre-defined output fuzzy 
variables.  
 

Fuzzification

Rule
Base

Inference

Defuzzification

Fuzzy Input Sets Fuzzy Output Sets

Crisp Inputs Crisp Outputs

 
Fig. 5. overview of the fuzzy logic system 

 
Linguistic variables: Linguistic variables include input and output variables of the fuzzy 
logic system whose values are words or sentences from a natural language, instead of 
numerical values [40]. In our system, input variables include five types of risk (Money risk, 
privacy risk and so on), while the output variable refers to the comprehensive risk. Usually, a 
linguistic variable is decomposed into a set of linguistic terms. In our system, all linguistic 
terms are shown in Table 7. 
 

Table 7. linguistic terms  
1) Money risk： 
LOW   :={(0.0，1.0)，(5.0，1.0)，(10.0，0.0)} 
AVERAGE  := {(5.0，0.0)，(15.0，1.0)，(25.0，0)} 
HIGH                := {(20.0，0.0)，(35.0，1.0)，(100，1)} 
2) Privacy risk 
LOW   := {(0.0，1.0)，(10.0，1.0)，(15.0，0.0)} 
AVERAGE  := {(10.0，0.0)，(20.0，1.0)，(30.0，0.0)} 
HIGH                := {(25.0，0.0)，(35.0，1.0)，(100.0，1.0)} 
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3) Sensitive program behavior risk 
LOW   := {(0.0，1.0)，(2.0，1.0)，(3.0，0.0)} 
AVERAGE  := {(2.0，0.0)，(6.0，1.0)，(8.0，0.0)} 
HIGH                := {(6.0，0.0)，(10.0，1.0)，(20，1.0)} 
4) Network connection risk 
LOW   := {(0.0，0.0)，(15.0，1.0)，(20.0，0.0)} 
AVERAGE  := {(15.0，0.0)，(30.0，1.0)，(40.0，0.0)} 
HIGH                 := {(35.0，0.0)，(50.0，1.0)，(100.0，1.0)} 
5) Highly dangerous permission risk. 
LOW   := {(0.0，0.0)，(8.0，1.0)，(12.0，0.0)} 
AVERAGE  := {(8.0，0.0)，(20.0，1.0)，(30.0，0.0)} 
HIGH                := {(25.0，0.0)，(30.0，1.0)，(100.0，0.0)} 
6) Comprehensive risk 
LOW   :=10 
AVERAGE  :=30 
HIGH                :=60 

 
Rule base: Included in the rule base, fuzzy rules are in the form of “if-then” (for instance, if 
the temperature is above 86 degree, then adjust the air conditioner to cooling mode) and used 
to compute output fuzzy functions. The computing process is analyzed qualitatively and 
resistant to the change of malicious features that only affect the application feature, i.e. the five 
specific kinds of application risk and the comprehensive risk. While the rule base is used to 
calculate the comprehensive risk and can be rebuilt due to the change of users’ risk preference 
instead of the change of the features of malware. Currently, two categories of rules are used in 
our fuzzy logic system. One of them is the independent rule, i.e. there is only one condition in 
the rule. Another one is the compound rule with more than one condition. More specifically, 
two compound rules are designed. Privacy risk and network connection risk make the first one, 
because they are closely related. Privacy risk and money risk make the second one, because 
the two are the most concerned types of risk. Table 8 illustrates the results of fuzzy operation 
inside a compound rule. 

It is worth noting that new fuzzy rules can be added to the rule base to describe the 
interaction of various risks in a more fine-grained level and compute fuzzy output functions in 
a more fine-grained way. Users can define new fuzzy rules that meet their needs in order to 
improve the weight of impact of some type of risk. For example, those who have low bearing 
capacity of money risk can increase money risk related fuzzy rules, thereby increasing the 
impact of money risk on the value of comprehensive risk. It will in turn improve the weight of 
impact of money risk on the classifier, which means money risk will have more weight in 
determining whether an unknown sample is benign or malicious.  
 

Table 8. fuzzy matrixes 

Risk level/result Low Average High 

Low Low Average High 

Average Average High High 

High High High High 
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Table 9. one sample of fuzzy rules 

RULE BLOCK 
AND:MIN; 
RULE 1: IF money is low then risk is low; 
RULE 1a: IF money risk is average then risk is average; 
RULE 1b: IF money risk is high then risk is high; 
 
RULE 2: IF privacy risk is low and connection risk is low, then risk is low; 
RULE 2a: IF privacy risk is average and connection risk is low risk is average 
RULE 2b: IF privacy risk is average and connection risk is average, then risk is high; 
........... 

 
Table 9 shows one sample of fuzzy rules, where the risk represents comprehensive risk. In 

our fuzzy logic system, AND operator is used to evaluate fuzzy rules and combine the results 
of all the rules. Specifically, the Min operation is used in our system. As shown in Formula (3), 
COGS (Centre of Gravity for Singletons) is used to defuzzify the resulting fuzzy outputs.  

                                                           1

1

p

i i
i

p

i
i

u v
U

v

=

=

=
∑

∑
                                                           (3) 

Where U represents the crisp output, u represents output fuzzy variable, v represents the 
membership function after accumulation. 

3.3 Classification 
We employ Weka [41] to implement machine learning algorithms to detect Android malware 
automatically. Our application feature consists of application risks. Five machine learning 
algorithms (RandomForest, J48, LibSVM, NaiveBayes, and BayesNet) from different 
classifiers are employed in order to select the best one according to the performance. These 
algorithms belong to three families, RandomForest and J48 belong to the decision tree 
algorithms, and LibSVM is a library for Support Vector Machine algorithm, while 
NaiveBayes and BayesNet come from the Bayes algorithms. 

4. Evaluation 

4.1 Dataset 
Our dataset consists of 16,116 benign applications and 14,448 malware samples. The former 
were collected from three Android application markets: Appchina [42], Anzhi [43] and 
Google Play, the latter were downloaded from VirusShare [44]. The training dataset contains 
10,000 benign applications and 5000 malware samples, both of which are randomly chosen 
from the raw dataset. The testing dataset includes 3000 benign applications and 3000 malware 
samples that are randomly chosen from the rest of the dataset. 

We measure True Positive Ratio (TPR), True Negative Ratio (TRN) and accuracy to 
evaluate the performance. As shown in Formula (4), TPR represents the proportion of malware 
instances that are correctly classified: 

                                                           
TPTPR

TP FN
=

+
                                                          (4) 
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Where TP is the number of malware samples correctly detected and FN is the number of 
malware samples identified as benign apps. As shown in Formula (5), TNR represents the 
proportion of benign apps that are correctly classified. 

                                                       
TNTNR

TN FP
=

+
                                                               (5) 

Where TN is the number of benign apps correctly detected and FP is the number of benign 
apps classified as malware. As shown in Formula (6), accuracy is used to evaluate the overall 
performance, it equals the result of the sum of benign and malware instances correctly 
identified divided by the whole number of the dataset instances. 

                                               
TP FNAccuracy

TP FN TN FP
+

=
+ + +

                                           (6) 

4.2 Performance 
As stated in section 3.3, we employ NaiveBayes, BayesNet, LibSVM, J48 and RandomForest 
to build classifiers. Based on Weka, 10-fold across validation is used to generate classifiers for 
every machine learning algorithm. Afterwards, we employ the classifiers to detect the testing 
set, and select the best one in each group. Firstly, to evaluate the influences of the risk factor 
and malicious trusted probability over each classifier’s performance and determine the 
optimum parameters (i.e. risk factor and malicious trusted probability) of the quantitative 
calculation model, we conduct twenty experiments where the values of risk factor and 
malicious trusted probability are described in section 3.1. 

4.2.1.  Performance of different risk factors and malicious trusted probabilities 
As shown in Fig. 6 (a) (for subscript x_y, x represents risk factor and y represents malicious 
trusted probability, i.e. Pmt), when risk factor remains unchanged, performance improves with 
the increase of Pmt and achieves the best (accuracy, TPR and TNR is 0.932, 0.925 and 0.939 
respectively) when malicious trusted probability equals 0.8. When malicious remains 
unchanged, as depicted in Fig. 6 (b), performance gets better with the increase of risk factor 
and reaches the top when risk factor equals 0.4. Therefore, for the quantitative calculation 
model, we set risk factor to 0.4 and malicious trusted probability to 0.8 for all the following 
experiments. 
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Fig. 6(b). performance of different risk factors when malicious trusted probability equals 0.8 

 

4.2.2. Performance of different features 
To evaluate the influences of different features over the performance, we conducted eight 
experiments with different features as shown in Table 10. Money risk and privacy risk are the 
two basic types of risk, so they are included in every feature of the experiments. For the sake of 
convenience, we use M, P, S, N, H, and C to represent money risk, privacy risk, sensitive 
program behavior risk, network connection risk, highly dangerous permission risk and 
comprehensive risk respectively. 
 

Table 10. application features 
Group  Application Feature 

1 M, P, C 
2 M, P, C, S 
3 M, P, C, N   
4 M, P, C, H 
5 M, P, C, N, S 
6 M, P, C, N, H 
7 M, P, C, H, S 
8 M, P, C, N, S, H 

 
 
As shown in Fig. 7, accuracy improves with the increase of the number of the risk types in 

the feature, and achieves the highest when the feature includes all the six types of risk. This 
happens if the number of risk types included in the evaluated feature is too few. There is a 
significant deviation between the real feature and the evaluated one, which misleads the 
classifiers and results in poor classification. When the number of risk types increases, the 
evaluated feature draws close to the real one, which results in sound performance. 
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Fig. 7. comparison of performance of different features 

 
 

 
Fig. 8. comparison of performance of different machine learning algorithms 

 
 

When there are only four risk types in the evaluated feature, the performance of the 
combination of M&P&C&N (or M&P&C&H) outperforms the combination of M&P&C&S, 
and when there are five risk types in the evaluated feature, the performance of the combination 
of M&P&C&H&N ranks the first. Such phenomenon illustrates that there are distinct 
differences in network connection risk and highly dangerous permission risk between benign 
apps and malware and the two have high similarities in sensitive program behaviors. 
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4.2.3. Run-time performance 

 
Fig. 9 (a). relationship between time overhead and the number of function call traces 

 
Fig. 9 (b). relationship between time overhead and the number of permission methods 

 
All experiments are conducted on a machine equipped with Intel (R) Core (TM) i7-410MQ 
CPU @ 2.5 GHz processor and 16GB of physical memory. The operating system is Ubuntu 
14.04 LTS (64 bit). We use SPSS to analyze the relationship between time overhead and the 
number of function call traces. As shown in Fig. 9 (a), the time overhead is in positive 
correlation with the number of function call traces. The red line in Fig. 9 (a) represents the 
average time overhead (231.18s). While the orange one represents the average number of 
function call trace of samples in the dataset, which is 5959.05. The ratio of time overhead to 
the number of function call traces is 38.9ms. When the number of function call trace is under 
2200, time overhead is within 100s. Fig. 9 (b) depicts the relation between time overhead and 
the number of permission methods. It is obvious that the number of permission methods of 
most samples ranges from 0 to 300. The red line represents the average number of permission 
methods, which is nearly 74.6. And the ratio of time overhead to the number of permission 
methods is 3.09s per method. 
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5. Related work 
One important direction in the field of Android malware detection concentrates on the inner 
structural information of an app. Similar to pervious work such as [45], [46] and [47], our 
approach also focuses on the inner structural information: function call traces of permission 
methods. [45] proposed a similarity-based approach, which relied on the similarities among 
apps to detect malware. Similarity score between two apps was computed based on their 
method similarity represented by NCD distance. While the NCD distance was measured by the 
similarity between the control flow graphs of the methods in the two apps. [46] employed code 
structures to characterize Android malware families, extracted the control flow graph of every 
method in the sample with the help of Androguard, and then applied text mining techniques to 
classify different Android malware families. Most similar to our work, the approach proposed 
in [47] extracted the function call graph of an app and applied a labeling function to label all 
the nodes of the graph by a 15-bit sequence. Afterwards, it calculated the hash-value for a 
given node and its direct neighboring nodes using a XOR operation. The hash-value is then 
embedded in a vector used by Support Vector Machine to classify Android malware. 

Compared with the aforementioned works, our work differs in the following three aspects. 
By filtering unrelated methods, our approach only targets the permission methods instead of 
all the methods in the APK samples. The function call trace extracted in our approach is 
actually a runnable trace, and it contains more context information than control flow graphs (in 
[45] and [46]) and hash-values used in [47]. Unlike [47], application risks are considered in 
our approach. We classify application risks into five categories and analyze different 
application risks in multi-dimensions, which helps improve the performance. More 
importantly, the accuracy of our method outperforms the one presented in [47]. As shown in 
Table 11, the results of our approach outperform other existing works and have the highest 
detection accuracy and the best AUC performance. 

 
Table 11. comparison with existing work 

Related work 
Number of 

samples 
(malicious/benign) 

TPR TNR Accuracy AUC 

Liang et al. [27] 1260/711 0.875 0.835 - - 
Sarma et al. [38] 121/158,062 - - - 0.85-0.91 
Peng et al. [39] 378/ 482,514 - - - 0.94-0.96 
Hugo et al. [47] 12,158/135,792 - - 0.89 - 
Our approach 3000/3000 0.925 0.939 0.932 0.983 

6. Discussion 
In reality, Android malware evolve to avoid detection by changing malicious features 
aggressively which results in different forms of function call traces of permission methods. 
Our approach outperforms feature-based methods and is resistant to such changes. Based on 
the fact that Android malware will always cause security risks to users, it is feasible to detect 
them through security risks. As long as Android malware rely on Android permission methods 
to conduct malicious behaviors, our method can extract the function call traces of the 
permission methods used in the malware and compute the security risks and then judge 
whether the application is benign or malicious, regardless of the implementation details of 
functions call traces such as adding dummy methods or deleting some unimportant methods.  

As a typical static analysis approach, our approach suffers the inherent limitations of static 
analysis, and it can be bypassed by techniques such as Java reflection, dynamic loading, 
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obfuscation etc. To alleviate the problem, we employ sensitive program behavior risk to 
indicate the risk brought by sensitive program behaviors. As our method needs to traverse the 
function call graph of a given sample to extract function call traces, it is more time-consuming 
compared with some existing work. But every approach has to achieve a balance between 
efficiency and performance. For our method, as an off-line detection approach, accuracy is 
more important and it is acceptable that the average detection time is at the level of minute. 

 7. Conclusion and Future work 
In this paper, we have presented a risk-based approach for detecting Android malware. Based 
on the observation that the main differences between benign applications and Android 
malware root in the way how Android permissions are used, we extract the function call traces 
of permission methods to describe how an application utilizes user-granted permissions. After 
calculating application risks, machine learning algorithms are applied to detect Android 
malware. 

We classify Android application risks into money risk, privacy risk, network connection 
risk, highly dangerous permission risk, sensitive behavior risk and introduce comprehensive 
risk to describe the overall risk of an application based on the former five, and present a 
quantitative calculation mode and a fuzzy logic system to calculate the comprehensive risk. 
All risk categories are embedded in a feature vector, and five machine learning algorithms are 
employed to automatically detect Android malware. The results show that our scheme is 
capable of detecting Android malware at a satisfying accuracy rate. 

For future work, we plan to optimize the algorithm of extracting function call trace to reduce 
the time overhead. Furthermore, to improve detection rate, we are going to conduct a hybrid 
Android malware analysis, i.e. combine static analysis and dynamic analysis, to solve the 
problems entangled with static approaches.  
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