• 제목/요약/키워드: Malicious Application

검색결과 192건 처리시간 0.025초

응용 소프트웨어 안전성 검증 시스템 설계 및 구현 (Design and Implementation of Safety Verification System for Application Software)

  • 소우영
    • 융합보안논문지
    • /
    • 제8권4호
    • /
    • pp.191-197
    • /
    • 2008
  • 악성 소프트웨어로 인한 피해가 나날이 급증하면서, 컴퓨터 사용자가 보안상 안전하게 사용할 수 있는 환경이 필수적으로 요구되고 있다. 일반적인 백신 프로그램은 악성코드가 실행된 이후에 이를 탐지한다. 이러한 백신 프로그램은 알려진 악성코드에 대해서는 효율적인 결과를 보이지만, 실행 전 응용 소프트웨어에 포함되어 있는 악성코드의 검출에 대해서는 그 기능이 없거나 부족한 실정이다. 이에 본 논문에서는 응용 소프트웨어의 실행 전 악성코드의 유무를 판단하기 위해 응용소프트웨어의 안전성 검증 시스템을 제안한다. 제안하는 안전성 검증 시스템은 악성코드의 흐름 유형을 파악하여 소프트웨어가 실행되기 전 이를 탐지함으로서 악성코드로 인해 일어날 수 있는 피해를 줄일 수 있는 계기가 될 것으로 사료된다.

  • PDF

안드로이드 앱 악성행위 탐지를 위한 분석 기법 연구 (Android Application Analysis Method for Malicious Activity Detection)

  • 심원태;김종명;류재철;노봉남
    • 정보보호학회논문지
    • /
    • 제21권1호
    • /
    • pp.213-219
    • /
    • 2011
  • 스마트폰 시장이 급속하게 성장함에 따라 보안위협도 동시에 증가하고 있다. 가장 큰 스마트폰 보안위협 중 하나는 스마트폰 마켓에 안전성이 검증되지 않은 어플리케이션이 유통되고 있다는 점이다. 안드로이드 마켓의 경우 어플리케이션 검증을 수행하지 않아 악성 어플리케이션이 유통되고 있는 상황이다. 이와 같이 마켓을 통해 유포되는 악성 어플리케이션에 대응하기 위해서는 안드로이드 어플리케이선의 악성 행위 여부를 탐지할수 있는 기술이 필요하다. 본 논문에서는 안드로이드 어플리케이션의 악성행위를 탐지할 수 있는 분석 방법을 제안하고 구현내용을 소개하고자 한다.

안드로이드 모바일 단말에서의 실시간 이벤트 유사도 기반 트로이 목마 형태의 악성 앱 판별 메커니즘 (Malicious Trojan Horse Application Discrimination Mechanism using Realtime Event Similarity on Android Mobile Devices)

  • 함유정;이형우
    • 인터넷정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.31-43
    • /
    • 2014
  • 안드로이드 기반 모바일 단말 사용자가 증가함에 따라 다양한 형태의 어플리케이션이 개발되어 안드로이드 마켓에 배포되고 있다. 하지만 오픈 마켓 또는 3rd party 마켓을 통해 악성 어플리케이션이 제작 및 배포되면서 안드로이드 기반 모바일 단말에 대한 보안 취약성 문제가 발생하고 있다. 대부분의 악성 어플리케이션 내에는 트로이 목마(Trojan Horse) 형태의 악성코드가 삽입되어 있어 모바일 단말 사용자 모르게 단말내 개인정보와 금융정보 등이 외부 서버로 유출된다는 문제점이 있다. 따라서 급격히 증가하고 있는 악성 모바일 어플리케이션에 의한 피해를 최소화하기 위해서는 능동적인 대응 메커니즘 개발이 필요하다. 이에 본 논문에서는 기존 악성 앱 탐지 기법의 장단점을 분석하고 안드로이드 모바일 단말내에서 실시간 이용시 발생하는 이벤트를 수집한 후 Jaccard 유사도를 중심으로 악성 어플리케이션을 판별하는 메커니즘을 제시하고 이를 기반으로 임의의 모바일 악성 앱에 대한 판별 결과를 제시하였다.

시스템 콜 이벤트 분석을 활용한 악성 애플리케이션 판별 (Malicious Application Determination Using the System Call Event)

  • 윤석민;함유정;한근식;이형우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권4호
    • /
    • pp.169-176
    • /
    • 2015
  • 최근 스마트폰 시장의 빠른 성장과 함께, 애플리케이션 시장 또한 크게 성장하고 있다. 애플리케이션은 날씨, 뉴스와 같은 정보검색을 비롯하여 교육, 게임, SNS 등 다양한 형태로 제공되고 있으며 다양한 유통경로를 통해 배포되고 있다. 이에 따라 일상에서 유용하게 사용할 수 있는 애플리케이션뿐만 아니라 악의적 목적을 가진 악성 애플리케이션의 배포 역시 급증하고 있다. 본 연구에서는 오픈마켓을 통해 배포되고 있는 정상 애플리케이션 및 Android MalGenome Project에서 제공하는 악성 애플리케이션의 이벤트를 추출, 분석하여 임의의 애플리케이션의 악성 여부를 판별하는 모형을 작성하고, 여러 가지 지표를 통해 모형을 평가하였다.

안드로이드 모바일 단말에서의 이벤트 수집을 통한 악성 앱 탐지 시스템 설계 및 구현 (Design and Implementation of Malicious Application Detection System Using Event Aggregation on Android based Mobile Devices)

  • 함유정;이형우
    • 인터넷정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.35-46
    • /
    • 2013
  • 모바일 단말 환경이 활성화되면서 안드로이드 플랫폼을 탑재한 상용 모바일 단말이 널리 보급되고 있다. 최근 안드로이드 기반 모바일 단말에서 보안 취약성이 발견되면서 악성 어플리케이션을 통한 공격이 급증하고 있다. 대부분의 악성 어플리케이션은 오픈 마켓 또는 인터넷을 통해 배포되며 어플리케이션 내에 악성코드가 삽입되어 있어 단말 사용자의 SMS, 전화번호부, 공인인증서 등 개인정보와 금융정보 등을 외부 서버로 유출시키는 공격을 시도한다. 이에 따라 상용 모바일 단말에 대한 보안 취약점 분석과 그에 따른 능동적인 대응 방안이 필요하다. 이에 본 연구에서는 최근 급증하는 악성 앱에 의한 피해를 최소화하기 위해 다수의 모바일 단말서 발생하는 이벤트 수집을 통해 모바일 단말 내에서 실행되는 악성 어플리케이션에 의한 공격을 탐지하는 시스템을 설계 및 구현하였다.

악성코드 실행과 은닉을 위한 다중 압축 연구 (A Study of Multiple Compression for Malicious Code Execution and Concealment)

  • 이정훈;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.299-302
    • /
    • 2010
  • 최근의 악성코드는 백신에 쉽게 탐지 되지 않기 위해 바이러스를 압축파일로 변조시켜 악성코드 패턴을 지연하는 추세이다. 시중에 나와 있는 수많은 백신엔진 중에서는 압축파일로 변조된 악성코드 패턴 및 검사가 가능한지 알아 봐야한다. 본 논문은 다중 압축 파일로 위장 변조된 은닉된 악성코드의 패턴을 검사하여 검출되는지를 검사 엔진을 통해 모의실험을 한다. 은닉된 악성코드의 행위를 분석하며, 호스트 파일 변조와 시스템 드라이버 파일 감염 및 레지스트리 등록이 되는가를 분석한다. 본 연구를 통해 은닉형 악성코드의 검사와 백신 치료 효과를 강화시켜 악성코드로 인한 피해를 감소하는데 기여할 것이다.

  • PDF

안드로이드 기반 모바일 단말 루팅 공격에 대한 이벤트 추출 기반 대응 기법 (Android based Mobile Device Rooting Attack Detection and Response Mechanism using Events Extracted from Daemon Processes)

  • 이형우
    • 정보보호학회논문지
    • /
    • 제23권3호
    • /
    • pp.479-490
    • /
    • 2013
  • 최근 삼성 갤럭시 노트 및 갤럭시 탭 10.1 등 안드로이드 기반 상용 모바일 단말을 대상으로 정상 어플리케이션인 것처럼 오픈 마켓에 배포된 악성 어플리케이션에 의한 공격들이 급증하고 있다. 공격자는 정상적인 어플리케이션에 악성코드를 삽입하여 상용 모바일 단말에 대한 루팅(Rooting) 공격을 수행한 후, 단말 내 저장된 사용자의 SMS, 전화번호부 등 개인정보와 공인인증서 등과 같은 금융정보를 외부 서버로 유출시키는 공격을 수행하게 된다. 따라서 상용 모바일 단말에 대한 악성코드 감염 여부를 판별하고 루팅 공격을 탐지 및 대응하기 위한 기법이 필요하다. 이에 본 논문에서는 안드로이드 기반 상용 모바일 단말에 대한 루팅 공격 기법에 대해 분석하고 이를 토대로 모니터링 데몬(Daemon)을 이용하여 상용 단말 내 공격 이벤트를 추출 및 수집하여 악성 어플리케이션으로 인한 공격에 능동적으로 대응하는 기법을 제시하였다.

프로파일 기반 악성 로더 공격탐지 및 필터링 기법 (Profile based Malicious Loader Attack Detection and Filtering Method)

  • 윤이중;김요식
    • 융합보안논문지
    • /
    • 제6권2호
    • /
    • pp.21-29
    • /
    • 2006
  • 소프트웨어를 대상으로 하는 다양한 공격방법이 등장하고 있는 가운데 컴퓨터 소프트웨어에 대한 불법 조작 및 변조 등의 위협이 증가하고 있다. 특히, 온라인상에서 동작하는 어플리케이션 클라이언트를 대상으로 악의적인 로더 프로그램을 이용하여 프로그램의 코드를 조작하고, 흐름을 변조하여 정상적인 동작을 방해하는 행위가 날로 늘어나고 있다. 본 논문에서는 악의적인 용도로 사용되는 로더가 가지는 패턴을 분석하여 시그너처를 생성하고, 변형된 패턴을 탐지할 수 있고 시그너처 기법을 보완한 프로파일 기반의 탐지 기법을 제시한다.

  • PDF

Mepelyzer : 서버 기반 다형상 모바일 앱에 대한 메소드 및 퍼미션 유사도 기반 악성앱 판별 (Mepelyzer : Malicious App Identification Mechanism based on Method & Permission Similarity Analysis of Server-Side Polymorphic Mobile Apps)

  • 이한성;이형우
    • 한국융합학회논문지
    • /
    • 제8권3호
    • /
    • pp.49-61
    • /
    • 2017
  • 안드로이드 플랫폼에서 다양한 모바일 애플리케이션이 개발/배포되면서 편리함과 유용성이 더욱 증가하고 있으나 지속적으로 악성 모바일 애플리케이션(Malicious Mobile Application) 또한 급증하고 있어 스마트폰 사용자도 모르게 단말 내 중요 정보 등이 외부로 유출되고 있다. 악성앱 검출을 위해 안드로이드 플랫폼을 대상으로 다양한 모바일 백신이 개발되었지만 최근에 발견된 서버 기반 다형상 모바일 악성앱인 경우 은닉 우회 기법을 포함하고 있으며, C&C 서버 기반 다형상 생성기에 의해서 각 사용자 단말에 매번 조금씩 다른 형태의 악성앱이 생성 및 설치되기 때문에 기존 모바일 백신에 손쉽게 검출되지 않는다는 문제점이 있다. 이에 본 논문에서는 서버 기반 다형상 모바일 악성앱에 대한 APK 역컴파일 과정을 통해 핵심 악성 코드를 구성하는 DEX 파일내 메소드에 대한 유사도와 접근권한 유사도 측정을 통해 상관관계를 분석하여 SSP 악성앱을 판별하는 기법을 제시하였다. DEX 메소드 유사도와 퍼미션 유사도 분석 결과 SSP 악성앱에 대한 동작 방식의 특징을 추출할 수 있었으며 정상앱과 구별 가능한 차이점을 발견할 수 있었다.

Naive Bayes 기반 안드로이드 악성코드 분석 기술 연구 (Android Malware Analysis Technology Research Based on Naive Bayes)

  • 황준호;이태진
    • 정보보호학회논문지
    • /
    • 제27권5호
    • /
    • pp.1087-1097
    • /
    • 2017
  • 스마트 폰의 보급률이 증가함에 따라 스마트 폰을 대상으로 하는 악성코드들이 증가하고 있다. 360 Security의 스마트 폰 악성코드 통계에 따르면 2015년 4분기에 비해 2016년 1분기에 악성코드가 437% 증가하는 수치를 보였다. 특히 이러한 스마트 폰 악성코드 유포의 주요 수단인 악성 어플리케이션들은 사용자 정보 유출, 데이터 파괴, 금전 갈취 등을 목적으로 하는데 운영 체제나 프로그래밍 언어가 제공하는 기능을 제어할 수 있게 해주는 인터페이스인 API에 의하여 동작하는 경우가 대부분이다. 본 논문에서는 정적 분석으로 도출한 어플리케이션 내 API의 패턴을 지도 학습 기법으로 머신에 학습하여 정상 어플리케이션과 악성 어플리케이션 내의 API 패턴의 유사도에 따라 악성 어플리케이션을 탐지하는 메커니즘을 제시하고 샘플 데이터에 대하여 해당 메커니즘을 사용하여 도출한 label 별 탐지율과 탐지율 개선을 위한 기법을 보인다. 특히, 제안된 메커니즘의 경우 신종 악성 어플리케이션의 API 패턴이 기존에 학습된 패턴과 일정 수준 유사한 경우 탐지가 가능하며 향후 어플리케이션의 다양한 feature를 연구하여 본 메커니즘에 적용한다면 anti-malware 체계의 신종 악성 어플리케이션 탐지에 사용될 수 있을 것이라 예상된다.