KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.6
/
pp.1133-1146
/
2011
Cognitive radio (CR) is considered one of the most promising next-generation communication systems; it has the ability to sense and make use of vacant channels that are unused by licensed users. Reliable detection of the licensed users' signals is an essential element for a CR network. Cooperative spectrum sensing (CSS) is able to offer better sensing performance as compared to individual sensing. The presence of malicious users who falsify sensing data can severely degrade the sensing performance of the CSS scheme. In this paper, we investigate a secure CSS scheme, based on the Kullback-Leibler Divergence (KL-divergence) theory, in order to identify malicious users and mitigate their harmful effect on the sensing performance of CSS in a CR network. The simulation results prove the effectiveness of the proposed scheme.
Due to the development of information systems and the Internet, the Internet and smart phones can access networking in any where and any time. This causes the program to exploit various vulnerabilities and malicious code created to go out information, the disclosure of such crime increasing day by day. The proposed countermeasure model will be able to contribute to block all kinds of malicious code activities.
Security and accuracy are two issues in the localization of wireless sensor networks (WSNs) that are difficult to balance in hostile indoor environments. Massive numbers of malicious positioning requests may cause the functional failure of an entire WSN. To eliminate the misjudgments caused by malicious nodes, we propose a compressive-sensing-based multiregional secure localization (CSMR_SL) algorithm to reduce the impact of malicious users on secure positioning by considering the resource-constrained nature of WSNs. In CSMR_SL, a multiregion offline mechanism is introduced to identify malicious nodes and a preprocessing procedure is adopted to weight and balance the contributions of anchor nodes. Simulation results show that CSMR_SL may significantly improve robustness against attacks and reduce the influence of indoor environments while maintaining sufficient accuracy levels.
Journal of information and communication convergence engineering
/
v.13
no.2
/
pp.74-80
/
2015
In cognitive radios, spectrum sensing plays an important role in accurately detecting the presence or absence of a licensed user. However, the intervention of malicious users (MUs) degrades the performance of spectrum sensing. Such users manipulate the local results and send falsified data to the data fusion center; this process is called spectrum sensing data falsification (SSDF). Thus, MUs degrade the spectrum sensing performance and increase uncertainty issues. In this paper, we propose a method based on the Hausdorff distance and a similarity measure matrix to measure the difference between the normal user evidence and the malicious user evidence. In addition, we use the Dempster-Shafer theory to combine the sets of evidence from each normal user evidence. We compare the proposed method with the k-means and Jaccard distance methods for malicious user detection. Simulation results show that the proposed method is effective against an SSDF attack.
International Journal of Advanced Culture Technology
/
v.9
no.3
/
pp.291-297
/
2021
Recently, as the number of new and variant malicious codes has increased exponentially, malware warnings are being issued to PC and smartphone users. Malware is becoming more and more intelligent. Efforts to protect personal information are becoming more and more important as social issues are used to stimulate the interest of PC users and allow users to directly download malicious codes. In this way, it is difficult to prevent malicious code because malicious code infiltrates in various forms. As a countermeasure to solve these problems, many studies are being conducted to apply deep learning. In this paper, we investigate and analyze various deep learning methods to detect and classify malware.
Journal of the Korea Institute of Information Security & Cryptology
/
v.21
no.2
/
pp.111-117
/
2011
Advances in encryption technology to secret communication and information security has been strengthened. Cryptovirus is the advent of encryption technology to exploit. Also, anyone can build and deploy malicious code using windows CAPI. Cryptovirus and malicious code using windows CAPI use the normal windows API. So vaccine software and security system are difficult to detect and analyze them. This paper examines and make hooking tool against Crytovirus and malicious code using windows CAPI.
Recently, cyberattacks are increasing in social engineering attacks using intelligent and continuous phishing sites and hacking techniques using malicious code. As personal security becomes important, there is a need for a method and a solution for determining whether a malicious URL exists using a web application. In this paper, we would like to find out each feature and limitation by comparing highly accurate techniques for detecting malicious URLs. Compared to classification algorithm models using features such as web flat panel DB and based URL detection sites, we propose an efficient URL anomaly detection technique.
JavaScript is a popular technique for activating static HTML. JavaScript has drawn more attention following the introduction of HTML5 Standard. In proportion to JavaScript's growing importance, attacks (ex. DDos, Information leak using its function) become more dangerous. Since these attacks do not create a trail, whether the JavaScript code is malicious or not must be decided. The real attack action is completed while the browser runs the JavaScript code. For these reasons, there is a need for a real-time classification and determination technique for malicious JavaScript. This paper proposes the Analysis Engine for detecting malicious JavaScript by adopting the requirements above. The analysis engine performs static analysis using signature-based detection and dynamic analysis using behavior-based detection. Static analysis can detect malicious JavaScript code, whereas dynamic analysis can detect the action of the JavaScript code.
Owing to the development of wireless infrastructure and mobile communication technology, There is growing interest in smart phone using it. The resulting popularity of smart phone has increased the Mobile Malicious AP-related security threat and the access to the wireless AP(Access Point) using Wi-Fi. mobile AP mechanism is the use of a mobile device with Internet access such as 3G cellular service to serve as an Internet gateway or access point for other devices. Within the enterprise, the use of mobile AP mechanism made corporate information management difficult owing to use wireless system that is impossible to wire packet monitoring. In this thesis, we propose mobile AP mechanism-based mobile malicious AP detection and prevention mechanism in radius authentication server network. Detection approach detects mobile AP mechanism-based mobile malicious AP by sniffing the beacon frame and analyzing the difference between an authorized AP and a mobile AP mechanism-based mobile malicious AP detection.
Recent developments in machine learning have attracted a lot of attention for techniques such as machine learning and deep learning that implement artificial intelligence. In this paper, binary malicious code using deep learning based R-CNN is imaged and the feature is extracted from the image to classify the family. In this paper, two steps are used in deep learning to image malicious code using CNN. And classify the characteristics of the family of malicious codes using R-CNN. Generate malicious code as an image, extract features, classify the family, and automatically classify the evolution of malicious code. The detection rate of the proposed method is 93.4% and the accuracy is 98.6%. In addition, the CNN processing speed for image processing of malicious code is 23.3 ms, and the R-CNN processing speed is 4ms to classify one sample.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.