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Abstract 
 

Cognitive radio (CR) is considered one of the most promising next-generation communication 
systems; it has the ability to sense and make use of vacant channels that are unused by licensed 
users.  Reliable detection of the licensed users’ signals is an essential element for a CR 
network.  Cooperative spectrum sensing (CSS) is able to offer better sensing performance as 
compared to individual sensing. The presence of malicious users who falsify sensing data can 
severely degrade the sensing performance of the CSS scheme. In this paper, we investigate a 
secure CSS scheme, based on the Kullback-Leibler Divergence (KL-divergence) theory, in 
order to  identify  malicious  users and  mitigate  their  harmful  effect  on  the sensing  
performance  of CSS in a CR network. The simulation results prove the effectiveness of the 
proposed scheme. 
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1. Introduction 

In recent years, additional bandwidth and higher bitrates have been required to meet usage 
demands due to the large development in wireless communication technologies. As a result, 
frequency bands have become a scarce resource.  However,  according  to the  recent  study  
conducted  by  the  Federal   Communications Commission  [1],  most  of  the assigned  radio 
frequency bands are not being efficiently utilized by licensed users. Cognitive Radio (CR) 
technology [2] has been proposed to solve the spectrum band utilization problem; the 
spectrum band’s inadequacy can be relieved by allowing some CR users to opportunistically 
access the spectrum assigned to the Primary User (PU) whenever the channel is free. At the 
same time, CR users must vacate their frequency when the presence of a PU is detected. 
Therefore, high reliability detection of the PU signal is crucial for CR networks. 

In  order  to  ascertain  the  presence  of  a  PU,  CR  users can use one  of  several common 
detection  methods, such as matched filter, feature, and energy detection [2][3]. Energy 
detection is the optimal method if the CR user has limited information about a PU signal (e.g., 
only the local noise power is known) [3].  With  energy  detection,  the  frequency energy  in 
the sensing channel is received in a fixed bandwidth, W,  over an  observation  time  window,  
T,  in order to  compare  with  the  energy threshold and determine whether or not the channel 
is being utilized. However, the received signal power may severely fluctuate due to multipath 
fading and shadowing effects; therefore, it is difficult to obtain reliable detection with only one 
CR user. Fortunately, improved usage detection can be obtained by allowing some CR users to 
perform Cooperative Spectrum Sensing (CSS) [4]. 

In the CSS  scheme,  the  variability  of  the  signal  strengths  at various  CR user locations 
can  be  used  to  improve  the sensing  performance  of  a  network  with  a  large  number  of 
CR users [4]. The research presented in Reference [5] determined that the presence of a few 
malicious users sending false sensing data can severely reduce the performance of a CSS 
scheme.  Algorithms used to identify the malicious users have been proposed in the studies of 
References [6] and [7]. In previous research [7], a malicious user detection scheme was 
proposed based on a robust outlier-detection technique; in the study, only the always YES 
malicious users are considered, which reduces the throughput of the CR system by giving false 
high energy values when the PU signal is not present. In addition, the technique in Reference 
[7] is unable to protect the CSS in the event of a large number of malicious users in the 
network. 

In this paper, we propose a robust malicious user detection scheme based on KL-divergence 
to protect a CSS against an attack from malicious users, and focus on evaluating the effects of  
four types of malicious users on spectrum sensing:  1) always YES users, who are the users that 
always give a high energy value; 2) always NO users, who are the users that always give a low 
energy value; 3) Opposite malicious users, who are the users that give a false high energy 
value when the absence of a PU signal is detected or give a false low energy value when the 
presence of a PU signal is detected; 4) Random opposite malicious users who will act like an 
opposite malicious users with probability r and act like a normal CR user with the 
probability1-r. The proposed scheme is based on the difference between the signal power 
distribution obtained from legitimate CR users and malicious users, in order to identify the 
malicious users. The KL-divergence is a helpful tool for measuring the (dis) similarity 
between the two distributions. Subsequently, it is suitable to adopt KL-divergence as a 
criterion for the detection of malicious users. 
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2. System Description 
We consider a CR network composed of N CR users and one PU. There is one PU occupying 
the observed band with a specific probability. All of the CR users use energy detectors to 
detect the presence of the PU signal. In addition, there  are  P  (P < N) malicious  users  in  the  
network, and they can be one of four types:  always  YES,  always  NO,  opposite or  random 
opposite.  In order  to  perform  CSS, all  CR  users  will  send  their  sensing data to the Fusion 
Center (FC) through a control channel, which is assumed to be perfect. Based on the sensing 
data obtained from the CR users, the FC makes a global decision concerning the presence or 
absence of the PU signal using a data fusion scheme.  

Each CR user performs individual spectrum sensing at a specific spectrum band in order to 
decide between the following two binary hypotheses: 
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where  H0 and  H1  correspond  to  the hypothesis  of  the absence and presence, respectively, 
of the PU signal, xj(k) represents the signal received by the CR user, hj denotes the amplitude 
gain of the channel, s(k) is the signal transmitted from the PU, and nj(k) is the additive white 
Gaussian noise.  

At the ith sensing interval for the jth CR user, the received signal power, Ej(i), is given as 
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where M is the number of samples over one sensing interval, and ki is the time slot at which the 
ith  sensing interval begins. 

When M is relatively large (often no less than 10 [8]), Ej can be closely approximated as a 
Gaussian random variable under both hypotheses as follows [8][9]: 
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where { }0 1,µ µ  and { }2 2

0 1,σ σ  are means and variances respectively and jγ  is the SNR of the 

channel between the PU and the thj  CR user. 
The received signal power of each of the CR user in each sensing interval  is  reported  to  

the  FC, and the equal  gain combination (EGC) rule will be used to combine all of them, such 
that 
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Finally, the global decision B(i) is determined by comparing Z(i) with the global energy 
threshold, λ, such that  
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3. Secure Cooperative Spectrum Sensing Base on Kullback-Leibler 
Divergence 

3.1 Kullback-Leibler Divergence 
The KL-divergence [10] is also known as the relative entropy between two probability density 
functions, f(x) and g(x), such that 
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It is obvious that the KL-divergence is always non-negative. Also, it  is  zero  if  and  only  if  

the  two  distributions coincide. KL-divergence is often used as a measure of the (dis) 
similarity between two distributions. 

The KL-divergence between two normal distributions with means and variance 
as ( )2~ ,f ff µ σ  and ( )2~ ,g gg µ σ  respectively, can be obtained such that [11] 
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3.2 Detection of Malicious Users Based on KL-Divergence 
The presence of malicious users can significantly reduce the sensing performance of a CSS in 
a CR network [5]. In the paper, we consider four types of malicious users (i.e., always YES, 
always NO, opposite and random opposite malicious users), each of which has different 
effects on the cooperative sensing system. Firstly, the always YES malicious user always sends 
high energy values, thus increasing the false alarm probability and decreasing the available 
bandwidth for the CR system. Secondly, the always NO malicious user always sends low 
energy values, thus increasing both the missed detection probability and the interference for 
the PU. The thirdly, the opposite malicious user, which is the most harmful user, may send a 
high energy value when no PU signal is present, or may send a low energy value when the PU 
signal is present; hence it can increase both the false alarm and the missed detection 
probability, as well as reduce the available bandwidth while increasing the interference to the 
PU. Lastly, we consider the opposite malicious users with the random manner (denoted as 
random opposite malicious user) who will act like an opposite malicious users with 
probability r and act like a normal CR user with the probability1-r.  
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The probability density function (PDF) of the energy value distribution that is given by the 

type of CR users under the hypothesis of the absence or presence of the PU signal can be 
illustrated as shown in Fig. 1. 

There  is  no  doubt  that  the  energy  distribution  given  by the four types of malicious users 
is very  different  as compared to  the one of a normal  CR  user.  Therefore, it is feasible to 
detect malicious users based on the “distance” between their energy distribution and a normal 
CR user’s. Consequently, in this section we present a new secure CSS scheme based on the 
(dis) similarity measurement tool between the two distributions, called the KL-divergence.  
The proposed scheme is conducted in three successive steps: local sensing, identification, and 
global combining. 

Step 1: Local sensing 

All of the CR users detect the signal from the PU in order to measure received signal power 
Ej(i), where j is the index of the CR user and i is the index of the sensing interval. The signal 
power received by all of the CR users at each sensing interval will be reported to the FC. Here, 
we assume that the FC has a similar function as the Nth CR user, that is, it also detects the 
signal from the PU in obtaining its own received signal power EN(i). Because the FC performs 
the role of the control center of a CR network and provides the final decision concerning the 
absence or presence of a PU, it is reasonable to assume that the sensing result of the FC is 
legitimate. 

Step 2: Identification 

In this step, the KL-divergence will be used as the criterion to identify which of the CR users 
are malicious. KL-divergences are defined below. 
 

Fig. 1. PDF of the energy distribution reported from the CR users under the absence or presence 
hypothesis of the PU signal: a) normal user, b) opposite malicious user, c) always YES malicious 

user, d) always NO malicious user and e) random opposite malicious user with r=0.6. 
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We define ( 1µ , 0µ ), ( 2

1σ , 2
0σ ) as the mean and variance of Z, respectively, under the 

hypotheses H1 and H0, respectively. Also, ( ,1jµ , ,0jµ ), ( 2
,1jσ , 2

,0jσ ) are defined as the mean and 
variance of Ej, under the hypotheses H1 and H0, respectively. Since Ej and Z have Gaussian 
distribution, Eqn. (8) can also be expressed as shown below. 
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2
11 1 ,1 1 ,1

2 2
10 1 ,0 1 ,0

2 2
01 0 ,1 0 ,1

2 2
00 0 ,0 0 ,0

, , ,

, , ,

, , ,

, , ,

j j

j j

j j

j j

d j D

d j D

d j D

d j D

µ µ σ σ

µ µ σ σ

µ µ σ σ

µ µ σ σ

=

=

=

=

                                           (9) 

 
Generally, in the case of the normal CR user, the distribution of data samples under the same 

hypothesis (H1 or H0) is “closer” together than those distributed under different hypotheses. 
Therefore, we have 
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On the other hand, this conclusion is incorrect for malicious users (i.e, always YES, always 

NO, opposite, random opposite), as is clearly shown by the illustrations in Fig. 1. 
Consequently, the criterion to distinguish between a normal CR user and a malicious user can 
be expressed as 
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Because we do not know exactly when the PU signal is present or absent, it is not possible to 

determine real values for ( 1µ , 0µ ), ( 2
1σ , 2

0σ ), ( ,1jµ , ,0jµ ), ( 2
,1jσ , 2

,0jσ ) which are needed for 
calculating the KL-divergence, as shown by Eqn. (7). Therefore, we must use estimated values. 
In CSS, the global decision is close to the real status of the PU signal. Therefore, we use the 
global decision, B(i), expressed by Eqn. (5), as the estimation of the PU signal, such that 
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Because  B(i) is  not  the  same  as  the  status  of  the  PU signal, the sample data, Z1, Z0, Ej,1 

and Ej,0, may have outlier values  (e.g.,  sample  data  under  hypothesis  H1 (or  H0 )  that may 
include  several  sample  points  under  hypothesis  H0 (or  H1 )). Hence, we propose using  an  
efficient  and  robust  estimation algorithm to estimate the mean and variance of sample sets 
for the case of existing outlier values, termed bi-weight estimate and bi-weight scale, 
respectively [10]. 

The bi-weight estimate [10] for the mean ( µ̂ ) is 
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where ( ){ }| 1,  2,  ...,  e i i k= is the sample set that represents Z1, Z0, Ej,1 and Ej,0, k is the 
current index of the sample set, D is the window size for estimating the mean value, and 
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and 
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It is noteworthy that the sensing interval, D is related to the history of sensing information 

which is stored in the FC. If the value of D is bigger, then estimation error of means and 
variances will be smaller. However, for larger value of D it will be harder for estimation 
process to adapt with the change of the PU signal. Fig. 2 illustrates the window size D used for 
estimating means and variances. 
 
 
 
 
 
 
 
 
 

Fig. 2. Window size D for estimating means and variances. 
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The bi-weight estimate calculates a weighted mean with lowered weighting being given to 
the observations further from the estimate. Initially, all of the data points are assigned equal 
weights and then the bi-weight estimate is calculated recursively.  S measures the median 
absolute deviation from the estimated mean, µ̂ . The parameter c1 is called the tuning constant 
and is generally set at c1 = 6 [12]. 

The bi-weight scale [10] for variance value ( 2σ̂ ) is 
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where - ,  - 1,  . . . ,i k D k D k= + , g is the number of data samples included in the data window 
such that ( )2 1u i < ,  and c2 is the tuning constant. 

Based  on  the  estimated  values  of  the means  and  variances of the sample data obtained 
using Eqns. (13)  and  (16), ( ) ( ) ( )2 2 2
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Subsequently, the criteria to detect a malicious user can be defined as 
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Step 3: Global combining 

After distinguishing between normal CR users and malicious users, all sensing data 
obtained by normal CR users will be combined using the EGC, such that 
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where Ω(i) is the set of normal CR users at the ith sensing interval, and ( )inΩ  is the number of 
elements of Ω(i). 

Finally, the global decision on the presence or absence of a PU signal will be made as 
shown by Eqn. (5). Because the estimation algorithm for means and variances requires many 
samples in order to provide robustness, we therefore need a training state for maintaining 
reliable estimation. The training state can be set as the first of D sensing intervals. In the 
training state, only sensing data from the FC, which is known not to be malicious, will be used 
to make a global decision. After D sensing intervals in the training state, the sensing data of 
CR users will be evaluated in order to detect malicious users, as shown by Eqn. (19), after 
which only normal CR users will contribute to making a global decision. 

4. Simulation Results 
For simulations, we consider a CR network with N = 10 CR users (including the FC). 
SNR=-10dB is set for all CR users. Four types of malicious users may appear in the network: 
always YES, always NO, opposite and random opposite malicious users with r=0.6. The 
effects of the various values of window size and number of sensing samples on the sensing 
performance are evaluated. For estimating the means and variances, tuning constants of c1 = 6 
and c2 = 9 [12] are chosen. In order to compare the sensing performances of the considered 
sensing schemes,  we  utilize  the  probability  of  error,  Pe, which is defined as 

 
( ) ( )0 1e f mP P P H P P H= +                                                 (21) 

 
where Pf  is the probability of false alarms and Pm is the probability of  missed detection. 
 
 
 

 
 
 
 
 

 

Fig. 3. Error probabilities of the sensing schemes according to the 
number of always NO malicious users when 10 CR users are given. 
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Fig. 3, 4, 5, and 6 show the error probabilities of the sensing schemes according to  the  
number  of  always  NO,  always  YES,  opposite and random opposite malicious  users,  
respectively for two cases of D and M. That is, D=80, M=30 and D=300, M=200.  The 
performances of EGC with all of the CR users including malicious users (denoted as “EGC 
with all CR users”) and only normal CR users  (denoted as “EGC with only  normal  CR  
users”)  and the sensing method II proposed in reference [7] (denoted as “the sensing method 
[7]”) are  provided  as  references. For the simulation of “the sensing method [7]”, in the paper 
we set the number of estimated means and variances of the previous sensing which is used to 
calculate outliers factor (denoted as K in the reference [7]) be 64.  In all cases of malicious 
users, the error probability of “EGC with all CR users” is always higher than in the other cases, 

Fig. 4. Error probabilities of the sensing schemes according to the 
number of always YES malicious users when 10 CR users are given. 

Fig. 5. Error probabilities of the sensing schemes according to the 
number of opposite malicious users when 10 CR users are given. 
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which means that EGC scheme is very vulnerable to the attack of malicious users. On the other 
hand, the error probability of the proposed scheme is similar to that of the “EGC with only 
normal CR users” in all considered cases of D and M values. This means that the proposed 
scheme successfully identified each of the four types of malicious users and removed their 
negative influences on the sensing process. For the smaller values of M (D=80, M=30), the 
sensing performance of the proposed scheme is degraded compared to the case that D=300 
and M=200. However, the proposed scheme still provides better performance than “EGC with 
all CR users” and “the sensing method [7]”.  From the above observation and the fact that the 
smaller M means the faster spectrum sensing, we can say that the selection of the number of 
sensing samples is related to the tradeoff between the sensing time and sensing performance of 
the CR network. 
 

 
 
 
 
 
 
 

 
 

Fig. 7. Error probabilities of the sensing schemes according to the 
number of CR users for different percentage of NO malicious users. 

 

Fig. 6. Error probabilities of the sensing schemes according to the 
number of opposite malicious users with the random manner 

when 10 CR users are given. 
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Fig. 7, 8, 9, and 10 illustrate the sensing error probabilities of the considered schemes 

according to the number of CR users when 50% and 80% of CR users are malicious users, 
respectively.  The performances of “EGC with all CR users”, “EGC with only normal CR  
users”  and “the sensing method [7]” are also considered for the sake of comparison. The 
sensing performances of all sensing schemes are improved as the number of CR users, N, 
increases. For the fixed value of N, the proposed scheme not only provides similar sensing 
performance to the “EGC with only normal CR users” but also provides better sensing 
performance than “EGC with all CR users” and “the sensing method [7]”. Even for the larger 
value of N, the proposed scheme is able to completely nullify the bad influence from malicious 
users regardless of the types of malicious users. 

Fig. 8. Error probabilities of the sensing schemes according to the 
number of CR users for different percentage of YES malicious users. 

 

Fig. 9. Error probabilities of the sensing schemes according to the 
number of CR users for different percentage of opposite malicious 

users. 
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5. Conclusion 
In this paper, we propose a malicious user suppression scheme based on KL-divergence for 
cooperative sensing in a CR network. The proposed scheme uses the KL-divergence as the 
criterion for detecting malicious users. The simulations show that the  proposed  scheme  is 
able to  successfully  identify  all  types  of malicious  users  and  remove  their  negative  
network influences even when the number of malicious users is 90% of the total number of 
users. 
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