• 제목/요약/키워드: Majority vote

검색결과 25건 처리시간 0.211초

신경회로망을 이용한 신호 자동식별기 구현 및 성능분석 (On the Performance Analysis of an Automatic Neural Network Signal Classifier)

  • 윤병수;양성철;남상원;오원천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.397-399
    • /
    • 1994
  • In this paper a feature-based automatic neural network signal classifier is presented, where five neural network algorithms such as MLP, RBF, LVQ2, MLP-Tree and LVQ-Tree are combined in parallel to classifiy various signals from their features, based on the majority vote method. To demonstrate the performance and applicability of the proposed signal classifier, some test results for the classification of synthetic waveforms and power disturbances are provided.

  • PDF

재무부실화 예측을 위한 랜덤 서브스페이스 앙상블 모형의 최적화 (Optimization of Random Subspace Ensemble for Bankruptcy Prediction)

  • 민성환
    • 한국IT서비스학회지
    • /
    • 제14권4호
    • /
    • pp.121-135
    • /
    • 2015
  • Ensemble classification is to utilize multiple classifiers instead of using a single classifier. Recently ensemble classifiers have attracted much attention in data mining community. Ensemble learning techniques has been proved to be very useful for improving the prediction accuracy. Bagging, boosting and random subspace are the most popular ensemble methods. In random subspace, each base classifier is trained on a randomly chosen feature subspace of the original feature space. The outputs of different base classifiers are aggregated together usually by a simple majority vote. In this study, we applied the random subspace method to the bankruptcy problem. Moreover, we proposed a method for optimizing the random subspace ensemble. The genetic algorithm was used to optimize classifier subset of random subspace ensemble for bankruptcy prediction. This paper applied the proposed genetic algorithm based random subspace ensemble model to the bankruptcy prediction problem using a real data set and compared it with other models. Experimental results showed the proposed model outperformed the other models.

유전자 발현량 데이터의 클러스터링을 이용한 다중 클래스 분류 모델 (Multi-Class Classification Model Using Gene Expression Data Clustering)

  • 김현진;안재균;박치현;윤영미;박상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.1240-1242
    • /
    • 2011
  • 본 논문에서는 여러 개의 클래스가 존재할 때, 각 클래스 내에서 샘플들을 클러스터링하고 서로 다른 클래스들과 분산도를 비교하여 클러스터가 가장 겹치지 않는 유전자 쌍들을 찾는다. 각 유전자 쌍에서 테스트 샘플과 가장 가까운 클러스터를 찾음으로써 클래스를 분류하고, 최종적으로 과반수 의결(Majority vote)하여 가장 많이 분류된 클래스를 최종 클래스로 확정한다. 그 결과, 해당 모델이 여러 개의 클래스를 가진 데이터에서 다른 비교 알고리즘의 모델들보다 높은 정확도를 나타내었다.

다중 각도 정보를 이용한 표적 구분 알고리즘 비교에 관한 연구 (A Comparative Study of Algorithms for Multi-Aspect Target Classifications)

  • 정호령;김경태;김효태
    • 한국전자파학회논문지
    • /
    • 제15권6호
    • /
    • pp.579-589
    • /
    • 2004
  • 일반적인 시간 영역에서의 레이더 신호들은 표적의 관측각에 민감하게 변화한다. 이로 인하여 각도가 넓어짐에 따라서 표적 구분의 정확도가 상당히 감소하게 된다. 이러한 문제를 해결하기 위하여 본 논문에서는 다중각도 정보를 이용하여 표적 구분 성능을 향상시키기 위한 방법을 제시한다. 먼저, 대표적인 시간영역 레이더신호인 1차원 range profile로부터 central moments와 PCA를 결합하여 특성백터를 추출한다. 추출된 특성백터에 다중 각도 정보를 사용하는 구분기를 적용시켜 넓은 관측각에서 표적 인식 성능을 향상시킬 수 있다. 다중 각도정보를 이용하는 기법에는 독립방식과 종속방식이 있으며, 본 논문에서는 두 기법의 성능을 비교한다. 성능 비교 실험에는 포항공대 단축거리 무반향실에서 측정된 여섯 개의 항공기 모델에 대한 레이더가 단면적 데이터가 이용된다.

엔트로피 분포를 이용한 규칙기반 분류분석 연구 (Rule-Based Classification Analysis Using Entropy Distribution)

  • 이정진;박해기
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.527-540
    • /
    • 2010
  • 규칙기반 분류분석(rule-based classification analysis)은 직관적인 이해가 쉽고 알고리즘이 복잡하지 않아 최근 대용량 데이터마이닝에 많이 이용되는 기법이다. 하지만 현재의 규칙기반 분석은 여러 개의 규칙들을 찾은후 이 규칙들을 단순히 다수결이나 또는 중요도의 가중 합으로서 새로운 데이터를 분류한다. 본 연구에서는 다항분포를 이용한 이항데이터의 분류분석 기법을 규칙 조합방법에 응용하고자한다. 다향분포의 추정을 위해서는 변형된 반복 비율 적합(iterative proportional fitting; IPF) 알고리즘을 이용하여 최대 엔트로피 분포(entropy distribution)를 찾는다. 시뮬레이션 실험 결과 이 방법은 두 집단의 데이터가 서로 유사한 경우 어느 정도 의미 있는 분류 결과를 보여주였다.

국민참여재판의 문제점과 개선방안 (Problems and its Remedy of the New Citizen Participation in Criminal Trial)

  • 정병곤
    • 한국콘텐츠학회논문지
    • /
    • 제11권12호
    • /
    • pp.250-257
    • /
    • 2011
  • 사법의 민주적 정당성을 강화하고 투명성을 높임으로써 국민의 신뢰확보를 위하여 마련된 국민참여재판이 시행된지 벌써 3년 10개월이 지났다. 형사사법절차에 국민이 참여하는 절차적 민주주의와 공정하고 신중한 재판이 실현되고 있다는 점에서 긍정적 평가를 받을 수 있다. 그러나 국민참여재판은 극소수의 사건을 재판대상으로 하여 배심원의 평결에 권고적 효력만 인정하고 구속력을 인정하지 않는 한계가 있다. 뿐만 아니라 대상사건의 한정, 피고인의 선택제, 배제결정제도, 법관의 평의관여 및 배심원의 다수결평결 등의 문제점을 여전히 갖고 있다. 따라서 본고는 국민참여재판에 대한 몇 가지 쟁점과 문제점을 검토한 후 이에 대한 대안을 제시하는 것을 연구의 초점으로 한다.

Improvement of Vocal Detection Accuracy Using Convolutional Neural Networks

  • You, Shingchern D.;Liu, Chien-Hung;Lin, Jia-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.729-748
    • /
    • 2021
  • Vocal detection is one of the fundamental steps in musical information retrieval. Typically, the detection process consists of feature extraction and classification steps. Recently, neural networks are shown to outperform traditional classifiers. In this paper, we report our study on how to improve detection accuracy further by carefully choosing the parameters of the deep network model. Through experiments, we conclude that a feature-classifier model is still better than an end-to-end model. The recommended model uses a spectrogram as the input plane and the classifier is an 18-layer convolutional neural network (CNN). With this arrangement, when compared with existing literature, the proposed model improves the accuracy from 91.8% to 94.1% in Jamendo dataset. As the dataset has an accuracy of more than 90%, the improvement of 2.3% is difficult and valuable. If even higher accuracy is required, the ensemble learning may be used. The recommend setting is a majority vote with seven proposed models. Doing so, the accuracy increases by about 1.1% in Jamendo dataset.

영상처리기법을 이용한 CNN 기반 리눅스 악성코드 분류 연구 (A Study on Classification of CNN-based Linux Malware using Image Processing Techniques)

  • 김세진;김도연;이후기;이태진
    • 한국산학기술학회논문지
    • /
    • 제21권9호
    • /
    • pp.634-642
    • /
    • 2020
  • 사물인터넷(IoT) 기기의 확산으로 인해 다양한 아키텍처가 존재하는 Linux 운영체제의 활용이 증가하였다. 이에 따라 Linux 기반의 IoT 기기에 대한 보안 위협이 증가하고 있으며 기존 악성코드를 기반으로 한 변종 악성코드도 꾸준히 등장하고 있다. 본 논문에서는 시각화한 ELF(Executable and Linkable Format) 파일의 바이너리 데이터를 영상처리 기법 중 LBP(Local Binary Pattern)와 Median Filter를 적용하여 CNN(Convolutional Neural Network)모델로 악성코드를 분류하는 시스템을 제안한다. 실험 결과 원본 이미지의 경우 98.77%의 점수로 가장 높은 정확도와 F1-score를 보였으며 재현율도 98.55%의 가장 높은 점수를 보였다. Median Filter의 경우 99.19%로 가장 높은 정밀도와 0.008%의 가장 낮은 위양성률을 확인하였으며 LBP의 경우 전반적으로 원본과 Median Filter보다 낮은 결과를 보였음을 확인하였다. 원본과 영상처리기법별 분류 결과를 다수결로 분류했을 경우 원본과 Median Filter의 결과보다 정확도, 정밀도, F1-score, 위양성률이 전반적으로 좋아졌음을 확인하였다. 향후 악성코드 패밀리 분류에 활용하거나 다른 영상처리기법을 추가하여 다수결 분류의 정확도를 높이는 연구를 진행할 예정이다.

선호와 정치제도를 중심으로 한 사회정책 발달이론의 모색 (Explaining the Development of Social Policy: Social Policy Preferences and Political Institution)

  • 홍경준
    • 한국사회복지학
    • /
    • 제61권4호
    • /
    • pp.35-59
    • /
    • 2009
  • 이 연구는 사회성원들의 사회정책 선호와 그러한 선호 표출의 제도적 장치인 정치제도에 따라 사회정책이 결정됨을 이론모형으로 제시하려 했다. 우선, 직접 민주주의 정치체제에서는 중위투표자의 사회정책 선호가 집합적 선택의 결과가 된다. 따라서 사회성원들의 사회정책 선호가 사회정책의 결정을 설명하는 핵심적 변수이다. 하지만 현실에서 사회정책의 결정은 직접 민주주의 방식으로 이루어지지 않는다. 이 연구에서는 사회정책에 대한 집합적 선택의 기제인 정치제도를 선거경쟁의 제도화 여부와 선거규칙의 특성에 따라 세 가지로 유형화하였다. 그를 통해 사회성원들의 선호가 동일하다고 할지라도 사회정책에 대한 집합적 선택의 기제인 정치제도에 따라 집합적으로 결정되는 사회정책의 수준은 상이하다는 점을 보이고자 했다. 결론적으로 이 글에서 제시한 이론모형은 현실에 존재하는 다양한 복지체제들이 사회성원들의 선호를 제약하는 제도적 조건들, 그에 따라 나타나는 사회성원들의 사회정책 선호, 그리고 사회성원들의 사회정책 선호를 집합적으로 모으는 정치제도의 차이에 의해 만들어진다는 점을 강조한다.

  • PDF

A Novel Grasshopper Optimization-based Particle Swarm Algorithm for Effective Spectrum Sensing in Cognitive Radio Networks

  • Ashok, J;Sowmia, KR;Jayashree, K;Priya, Vijay
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.520-541
    • /
    • 2023
  • In CRNs, SS is of utmost significance. Every CR user generates a sensing report during the training phase beneath various circumstances, and depending on a collective process, either communicates or remains silent. In the training stage, the fusion centre combines the local judgments made by CR users by a majority vote, and then returns a final conclusion to every CR user. Enough data regarding the environment, including the activity of PU and every CR's response to that activity, is acquired and sensing classes are created during the training stage. Every CR user compares their most recent sensing report to the previous sensing classes during the classification stage, and distance vectors are generated. The posterior probability of every sensing class is derived on the basis of quantitative data, and the sensing report is then classified as either signifying the presence or absence of PU. The ISVM technique is utilized to compute the quantitative variables necessary to compute the posterior probability. Here, the iterations of SVM are tuned by novel GO-PSA by combining GOA and PSO. Novel GO-PSA is developed since it overcomes the problem of computational complexity, returns minimum error, and also saves time when compared with various state-of-the-art algorithms. The dependability of every CR user is taken into consideration as these local choices are then integrated at the fusion centre utilizing an innovative decision combination technique. Depending on the collective choice, the CR users will then communicate or remain silent.