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Abstract 

 
 In CRNs, SS is of utmost significance. Every CR user generates a sensing report during the 
training phase beneath various circumstances, and depending on a collective process, either 
communicates or remains silent. In the training stage, the fusion centre combines the local 
judgments made by CR users by a majority vote, and then returns a final conclusion to every 
CR user. Enough data regarding the environment, including the activity of PU and every 
CR's response to that activity, is acquired and sensing classes are created during the training 
stage. Every CR user compares their most recent sensing report to the previous sensing 
classes during the classification stage, and distance vectors are generated. The posterior 
probability of every sensing class is derived on the basis of quantitative data, and the sensing 
report is then classified as either signifying the presence or absence of PU. The 
ISVM technique is utilized to compute the quantitative variables necessary to compute the 
posterior probability. Here, the iterations of SVM are tuned by novel GO-PSA by combining 
GOA and PSO. Novel GO-PSA is developed since it overcomes the problem of 
computational complexity, returns minimum error, and also saves time when compared with 
various state-of-the-art algorithms. The dependability of every CR user is taken into 
consideration as these local choices are then integrated at the fusion centre utilizing an 
innovative decision combination technique. Depending on the collective choice, the CR 
users will then communicate or remain silent. 
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1. Introduction 

To make better usage of the electromagnetic frequency spectrum, CR was first introduced 
in 1999 [1]. On the one hand, certain spectrum bands face overuse, which reduces their 
bandwidth availability, while on the other hand, remaining bands, such those allotted to TV 
channels, may suffer underuse, which wastes network resources [2]. For instance, mobile 
cellular networks, which are capacity constrained, are designed to support an increase in 
users and data traffic [3]. PU and SU are two distinct user kinds that have been added to the 
CR idea in order to alleviate the bandwidth shortage in wireless communication networks [4]. 
The former, a licensed user, has first dibs on the spectrum, but the latter, an unlicensed user, 
can utilize it as they see fit [5] [6].  

The traditional CR spectrum access procedure consists of four stages: spectrum sensing, 
spectrum sharing, spectrum decision, and spectrum mobility [7] [8]. When there are 
numerous channels available, SUs pick one of them to connect with, during the spectrum 
choosing phase [9] [10] [11]. The latter describes a situation in which the sensed bandwidth 
exceeds the channel's coherence bandwidth. As a result, NB sensing techniques must make a 
trade-off between the higher count of accessible bands and a specific bandwidth [12]. Owing 
to their ignorance of the occupancy circumstances of the spectrum bands that need to be felt, 
existing CR spectrum access approaches have been crude and ineffective. Moreover, present 
spectrum access methods are incapable of detecting network modifications or even taking 
into account the needs of unlicensed users, which results in a worse QoS and unnecessary 
latency [13]. Future wireless communication networks will heavily rely on user-specific 
strategies; therefore, the traditional CR spectrum access has to be upgraded to be more 
efficient and quicker.  

The paper contribution is. 

• To provide a trustworthy SS method using a novel machine learning technique. 

• To perform the classification stage using ISVM, where the iterations are tuned by 
novel hybrid optimization algorithm. 

• To propose a novel form of hybrid optimization algorithm called GO-PSA for 
enhancing the classification stage and to compare the proposed method with 
existing algorithms to describe the superiority. 

Machine learning has recently been applied to spectrum sensing to increase sensing 
sensitivity [14]. After extracting features in the spectrum sensing method, the classifier in 
machine learning-oriented approaches can use either soft or hard combining methods to 
make decisions. Although much work has been done to develop the effectiveness of machine 
learning-oriented SS approaches, very little of it has taken into account mobility impacts and 
various fading channel types, which we predict would have a significant influence on the 
outcomes [15]. 

The paper organization is as follows: Section I is the introduction of SS in CRNs. Section 
II is literature survey. Section III is system model and CRN for the proposed model. Section 
IV is SS and effective SS for the proposed model. Section V is ISVM and proposed GO-PSA 
for the developed effective SS in CRNs. Section VI is results. Section VII is conclusion. 
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2. Literature Survey 
An extensive literature survey of critical and recent methods has been carried out and the 
findings have been comprehensively presented in Table 1.  

Table 1. Comparison of existing methods 

Literature 
Work 

Methodology Merits  Demerits 

Thilina et 
al. (2013) 
[16] 

KNN based CSS 
for spectrum 
detection 

 Better Classification 
accuracy 

 Time consuming as 
determination and 
analysis of ROC for 
each sensing cycle is 
quite complex 

Zhang et al. 
(2018) [17] 

Distributed 
Reinforcement 
learning approach 

 Adaptable to 
dynamic scenario 

 Scalable 

 Network construction is 
complex 

 Requires immense prior 
knowledge of channel 
state information 

Ozturk et al. 
(2019) [18] 

ANN based 
Narrow band 
sensing approach 

 Learning based and 
hence better 
classification possible 

 Quite suited for 
dynamic approaches 
where prior 
knowledge of 
channel continuously 
changes 

 Accuracy depends on the 
meticulous planning of 
design of ANN layers.  

 Not suitable for 5G 
networks characterized 
by wide bandwidth  

 Increased latency 
incurred due to slow 
learning curve 

Liu et al. 
(2019) [19] 

Bayesian learning 
based CSS 
coupled with K-
means 

 Extremely flexible 
towards scalable and 
changing dynamic 
channel state 
information (CSI) 

 Improved prediction 
on presence/absence 
of PU activity 
observed from the 
experimental results 

 No proper methodology 
available for selection of 
right kind of prior CSI 
leading to inaccuracies.  

Kant et al. 
(2021) [20] 

Manta Ray 
foraging approach 
based spectrum 
sensing 

 Improved accuracy in 
detection due to 
optimal selection of 
features of CSI 

 Well-suited for large 
bandwidth networks 
like 5G, 6G etc. 
underutilization may 
occur in narrow band 
sensing. 

Shamim et 
al. (2021) 

SVM based 
spectrum sensing 

 Able to distinguish 
PU mitigation 

 Reduced detection 
accuracy at the cost of 
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[21] attacks in a more 
effective manner.  

increased PU mitigation 
attacks.  

 Increased latency also 
observed.  

Ahmed et 
al. (2021) 
[22] 

CR-IoTNet based 
spectrum sensing 

 Is better able to locate 
the spectrum spaces 
in the channel thus 
reducing the waiting 
time of the SUs.  

 Increased complexity as 
the energy levels of 
nodes in the IoT 
network also have to be 
considered with their 
associated optimal 
routing issues 

Wang et al. 
(2022), [23] 

Adversarial 
learning based 
spectrum sensing.  

 Detection based on 
learned features 
hence reducing 
dependency on the 
SNR. 

 Not suitable for dynamic 
scenarios where the 
nature of SNRs may 
vary.  

 Also not suited when 
high noise is 
encountered in received 
signal 

Paul et al. 
(2022) [24] 

SVM based DQN 
model for 
detection 

 Improved energy 
efficiency over 
conventional 
detection models  

 Increased false alarm 
probability in cases 
where noise is 
predominant in the 
receiver channel 

Abusubaih 
et al. (2022) 
[25] 

Rule based KNN 
based spectrum 
detection 

 Improved true 
positives in cases of 
increasing noise in 
the channel 

 Rule based and not quite 
suited for dynamic 
scenarios.  

 
Limitations in existing methods: 

 Most of methods provide good detection accuracies. However, they depend on 
extensive and meticulous design of learning architectures.  

 Most of the methods especially exhibit slow learning characteristics in contrast to 
rapidly changing dynamic scenario of the receiver channel which increases 
latency and even high false alarm probabilities.  

 Some methods are rule based and hence there is a need to continuously monitor 
and modify the rules as per changing dynamic scenario.  

 Selection of optimal features for the classification/detection process is always and 
has been observed to be a challenging issue.  
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3. System model and Cognitive Radio Network for the proposed model 

3.1 System Model 
The utilized quantization technique and the energy detection technique are detailed in this 
part. This section describes the creation of the sensing report that is utilized in the spectrum 
sensing program's training and classification phases [26]. If the FC determines that there is a 
spectral hole, the CR user transmits data. Users of CR work in half-duplex mode, which 
allows them to either send or receive at any one moment. Users of CR are presumptively 
near to the PU and away from remaining PUs. Fig. 1 depicts the system model. 

CSS creates spatial diversity, whereas mini slotting the sensing slot creates temporal 
diversity.  The ideal length of a sensing slot was explored by the authors in [27]. The length 
of a poor sensing slot is taken into account in this study. When fading and shadowing events 
are prevalent, the sensing outcome might alter. By detecting the spectrum times during the 
sensing window, temporal diversity mitigates these effects. The sensing slot is again split 
into mini slots in this research. The spectrum is separately detected in every mini slot.  

The sensing ability can be enhanced by increasing the count of mini slots and 
subsequently the sensing time, however this reduces the transmission slot duration [27]. [27] 
asserts that the introduction of diversity reception into the sensing procedure occurs when the 
channel is separately sensed in mini slots during the similar sensing period. The outcomes of 
these mini slots are merged in the suggested method to create a sensing report, which is then 
utilized in the classification stage. To determine every CR user's level of confidence in a 
CRN that is being attacked by hostile users, the sensing reports were actually employed in 
[28].  

The sensing data in this study are utilised to train the classifiers and are next employed to 
categorise the most recent sensing report.  This presents a half-duplex CR user 
framework where no CR users communicate during the sensing slot. The CR users 
communicate in the transmission slot if it is determined during the sensing slot that the PU is 
not present; else, they stay neutral. The CR users perceive the spectrum once more after the 
time frame's lifetime, comes to an end. Every mini slot makes advantage of energy 
detection.  The energy that the 𝑗𝑗𝑡𝑡ℎCR user acquired in the 𝜔𝜔𝑡𝑡ℎ sensing slot in the 𝑙𝑙𝑡𝑡ℎmini slot 
𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗 may be represented as 

𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗 = ∑ �𝑓𝑓𝑙𝑙,𝜔𝜔,𝑗𝑗(𝑘𝑘)�2𝑂𝑂0
𝑘𝑘=1         (1) 

Here, 𝑂𝑂0 shows the total count of samples, denoted by 𝑙𝑙 ∈ {1,2,3,⋯ , 𝑜𝑜}and 𝑜𝑜shows the 
total count of minislots, 𝑓𝑓𝑙𝑙,𝜔𝜔,𝑗𝑗(𝑘𝑘)shows the 𝑘𝑘𝑡𝑡ℎenergy sample obtained at the 𝑙𝑙𝑡𝑡ℎmini slot of 
the 𝜔𝜔𝑡𝑡ℎsensing slot. The detection time 𝑈𝑈as well as the signal bandwidth 𝐶𝐶 is both expressed 
in Hertz.  The bandwidth linked with the detected spectrum as well as the sensing duration 
determine how many samples are received in a certain minislot. The received signal𝑓𝑓𝑙𝑙,𝜔𝜔,𝑗𝑗(𝑘𝑘), 
is presented in both the existence of PU (𝐼𝐼1) and lack of PU (𝐼𝐼0)as below. 

𝑓𝑓𝑙𝑙,𝜔𝜔,𝑗𝑗(𝑘𝑘) = {
𝑤𝑤𝑙𝑙,𝜔𝜔,𝑗𝑗(𝑘𝑘); 𝐼𝐼0

𝑡𝑡𝑙𝑙,𝜔𝜔,𝑗𝑗(𝑘𝑘) + 𝑤𝑤𝑙𝑙,𝜔𝜔,𝑗𝑗(𝑘𝑘) 𝐼𝐼1
      (2) 

Here, 𝑡𝑡𝑙𝑙,𝜔𝜔,𝑗𝑗(𝑘𝑘) shows the 𝑘𝑘𝑡𝑡ℎsample of the PU signal received at the 𝑙𝑙𝑡𝑡ℎminislot of the 
𝜔𝜔𝑡𝑡ℎsensing slot by the 𝑗𝑗𝑡𝑡ℎCR user, and 𝑤𝑤𝑙𝑙,𝜔𝜔,𝑗𝑗(𝑘𝑘) shows zero-mean Additive White Gaussian 
Noise (AWGN).  The pdf of the energy of the received signal at the 𝑗𝑗𝑡𝑡ℎCR user 𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗 
continues to follow a central chisquare distribution having mean 𝜇𝜇0 and variance 𝜎𝜎02 if the 
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primary signal is unavailable, and a noncentral chisquare distribution having mean 𝜇𝜇1 and 
variance 𝜎𝜎12 if the primary signal is present.  

𝜇𝜇0 = 𝑂𝑂0  

𝜎𝜎02 = 2𝑂𝑂0   

𝜇𝜇1 = 𝑂𝑂0�𝛾𝛾𝑗𝑗 + 1�         (3) 

𝜎𝜎12 = 2𝑂𝑂0�2𝛾𝛾𝑗𝑗 + 1�  

Here, 𝛾𝛾𝑗𝑗shows the SNR of the 𝑗𝑗𝑡𝑡ℎCR user's received signal.  The energy signal received 
𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗beneath both hypotheses 𝐼𝐼0 and 𝐼𝐼1 can be roughly represented by a Gaussian random 
variable when the total count of samples, 𝑂𝑂0, is high. The energy signal at every minislot in 
this approach is quantized into distinct zones.  

The slotted-frame architecture, in which a frame becomes single unit of accessibility to 
the spectrum, is explored in the study. Every frame's first slot, also known as the detecting 
slot, is utilized to sense the spectrum and determine whether or not the PU is active. Usually, 
they don't say anything during the entire transmission window. The CR users will begin 
detecting the spectrum once the broadcast slot has ended. 

Since wireless channels fluctuate quickly, the spectrum is felt more than once rather than 
just once in order to take the channel's shifting behaviour into account. The detecting slot in 
the work is split into minislots to accomplish this. Every minislot's spectrum is individually 
felt, and a sensing report is created on the basis of the findings. Based on the quantized 
decision of every minislot, conveyed by Eq. (4), a sensing report is created that will be 
utilized in the subsequent classification phase. 

There are four quantization levels in this project, or 𝑁𝑁 = 4 . 
𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴4represents quantization zones or tese levels, respectively. In contrast to 
zones 𝐴𝐴3and 𝐴𝐴4 , which signify strong energy or the existence of the PU, zones 𝐴𝐴1and 
𝐴𝐴2stand for low energy or the lack of the PU. These are the quantized energy zones:  

𝑣𝑣𝑙𝑙,𝜔𝜔,𝑗𝑗 = {
𝐼𝐼0{
𝐴𝐴1; 𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗 ≤ 𝜆𝜆𝐴𝐴1
𝐴𝐴2; 𝜆𝜆𝐴𝐴1 < 𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗 ≤ 𝜆𝜆𝐴𝐴2

𝐼𝐼1{
𝐴𝐴3; 𝜆𝜆𝐴𝐴2 < 𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗 ≤ 𝜆𝜆𝐴𝐴3
𝐴𝐴4; 𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗 > 𝜆𝜆𝐴𝐴3

       (4) 

Here, 𝑣𝑣𝑙𝑙,𝜔𝜔,𝑗𝑗 stands for the quantized energy for the 𝑙𝑙𝑡𝑡ℎminislot of the 𝜔𝜔𝑡𝑡ℎsensing slot of 
the 𝑗𝑗𝑡𝑡ℎCR user, and 𝜆𝜆𝐴𝐴1 , 𝜆𝜆𝐴𝐴2 , 𝜆𝜆𝐴𝐴3 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆𝐴𝐴4describes the thresholds. The group of quantization 
zones is comprised of𝑟𝑟 ∈ {𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐴𝐴4}, while the group of thresholds is made up of𝜆𝜆 ∈
�𝜆𝜆𝐴𝐴1 ,𝜆𝜆𝐴𝐴2 , 𝜆𝜆𝐴𝐴3 , 𝜆𝜆𝐴𝐴4�.  Equation (4) indicates that the average received energy at the 𝑗𝑗𝑡𝑡ℎCR user 
at the 𝑙𝑙𝑡𝑡ℎsensing slot �𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗� can be quantized into either 𝐴𝐴1or 𝐴𝐴2, and in the event of𝐼𝐼0, 
𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗 is quantized into either 𝐴𝐴3or 𝐴𝐴4 . The quantization system interprets 𝐴𝐴1and 𝐴𝐴2as 𝐼𝐼0 , 
whereas 𝐴𝐴3and 𝐴𝐴4as𝐼𝐼1.  

A sensing report made up of symbols from 𝑟𝑟 is created at every sensing slot. Sensing 
report refers to the report for the 𝑗𝑗𝑡𝑡ℎCR user at the 𝜔𝜔𝑡𝑡ℎsensing slot and is expressed by𝑆𝑆𝑗𝑗,𝜔𝜔, 
which has 𝑜𝑜 items from 𝑟𝑟. This information is utilised by the machine learning algorithm as a 
feature vector. This data is categorised into a sensing class during the training stage on the 
basis of the global decision and the ACK.   
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Fig. 1.  System Model 

3.2 Cognitive Radio Network 
As long as PU communication is unaffected, CR users have unrestricted access to the 

spectrum [29] [30]. The spectrum is regularly checked for PU activity to make sure of this. 
Spectrum sensing may also be utilized to find spectrum openings and allow CR users to 
communicate when there exists a good opportunity. Through the usage of CSS, which entails 
numerous CR users working together to find spectral gaps, a CR state's performance gain is 
again increased. 

While matched filtering works better than alternative methods like the use of cyclo 
stationary detection and energy detection, its complexity renders it problematic for spectrum 
sensing because of several systems. The easiest approach is energy detection in light of the 
constrained resources (such as energy and cognitive average CR users' power). CSS uses 
spatial variety, hence need maintaining of PU restrictions [31]. In CSS, each CR user 
provides data to a FC, which integrates local reports to reach a judgement at the global level. 
The real quantity of energy received, which has not been quantized into different levels, can 
be reported by CR users. This technique, known as a soft-decision pair, produces the best 
detection accuracy but, potentially, uses an infinite amount of bandwidth. As an option, CR 
users can decide definitively on the basis of the energy received [32]. Hard reporting uses 
less bandwidth but delivers less effective outcomes than soft reporting. Almost 
similar performance exists for likelihood ratio tests and linear soft combinations [33].  

Here, the energy range can be quantized, as in [34], a mix of both soft and hard choices 
can be employed to optimize performance as well as bandwidth efficiency. The measured 
energy is quantized into four regions utilizing two bits in employing what is known as a 
"softened hard combination technique," with every zone being denoted by a label. This 
strikes a fair balance among the information lost during the quantization procedure and the 
enhanced performance brought on by smart reporting. 

For example, an AND rule increases spectral hole identification but reduces the PU main 
criterion while an OR rule produces high PU protection but has the lowest spectral hole 
exploration capabilities [35]. Similar to this, the kout-N decision combination rule performs 
worse when there is poor sensing and/or malevolent CR users. PU protection and spectral 
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hole discovery are improved by more complex combination methods, but they also demand 
previous knowledge that may not always be present in a single CR scenario [36].  

The idea of CRs includes the idea of learning from the surroundings. Users of CR are 
bound to maintain an eye on their surroundings and adjust their operational parameters 
(transmitting power, operating frequency, etc.) to the shifting circumstances. Numerous 
writers have thought about machine learning methods to help CR users learn from the 
surroundings [37] [38] [39] [40] [41] [42]. SS cannot accurately establish the PU state on the 
basis of the current sensing slot alone since fading and shadowing can make it difficult to 
estimate the channel state [37]. Spectrum sensing on the basis of machine learning may, 
nevertheless, indirectly learn about the surrounding world. One benefit of machine learning-
oriented spectrum sensing describes its ability to accurately identify PU activity without the 
need for prior environmental knowledge.  

4. Spectrum Sensing and effective spectrum sensing for the proposed 
model 

4.1 Spectrum Sensing 
The suggested spectrum sensing method seeks to enhance PU detection performance in 

various situations to enhance spectral hole identification [43]. The next objective effectively 
takes use of spectrum access options to let the CR user transfer data. The energy vector is 
used to determine the channel accessibility for the 𝑗𝑗𝑡𝑡ℎ CR user during the 𝜔𝜔𝑡𝑡ℎ sensing 
slot�𝑆𝑆𝑗𝑗,𝜔𝜔�. It is necessary to study the behaviour of the PU in order to accurately map 𝑆𝑆𝑗𝑗,𝜔𝜔, to 
PU activities. But in this situation, the energy vector is comparable to a feature vector in the 
area of machine learning.  

A training step is required to build a classifier, which will categorise the current sensing 
report into channel available (𝐼𝐼0) or channel busy (𝐼𝐼1) classes. Energy vectors of size 𝑋𝑋 are 
stored by every CR user, in which 𝑋𝑋 shows the length of the training or training step. The 
slotted-frame architecture is employed in the training stage, and each one-time slot contains 
two phases: a sensing stage and a transmission stage. 𝑋𝑋 places are available throughout the 
training period. The classifier accepts these vectors as input during the classification stage, 
which determines whether the current sensing report is in the 𝐼𝐼0or 𝐼𝐼1category based on 
comparisons with pre recorded sensing reports.  

In the suggested method, the sensing reports—which are created quantized energy 
vectors—are mapped to the precise condition of the PU so that the CR users may first 
understand how the PU behaves. Using ACK and a trustworthy mix of local decisions made 
by CR users that are decided by the FC, the real condition of the PU is discovered. The CR 
user's role during the training stage is distinct from its role during the classification stage. 
During the training stage, sensing reports are categorised into sensing classes based on the 
PU's real activity and the CR user's behaviour.  

Training Stage: The 𝑗𝑗𝑡𝑡ℎ CR user creates a sensing report 𝑆𝑆𝑗𝑗,𝜔𝜔 , generates a local 
determination on the basis of the average received energy in the active sensing slot, transmits 
the local determination to the FC, and then designates the sensing report to a sensing class on 
the basis of the FC's decision and the ACK's status. Assume a description of the energy 
received at the 𝑗𝑗𝑡𝑡ℎCR user's 𝜔𝜔𝑡𝑡ℎsensing slot𝑍𝑍𝑗𝑗,𝜔𝜔, where  

𝑍𝑍𝑗𝑗,𝜔𝜔 =
∑ 𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗
𝑜𝑜
𝑙𝑙=1

𝑜𝑜
         (5) 
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Here, 𝑌𝑌𝑙𝑙,𝜔𝜔,𝑗𝑗 is provided by Eq. (1).  In the training stage, the local choice for the 𝑗𝑗𝑡𝑡ℎCR 
user at the 𝜔𝜔𝑡𝑡ℎsensing slot is denoted by 𝑟𝑟𝑗𝑗,𝜔𝜔and supplied by [31].  

𝑟𝑟𝑗𝑗,𝜔𝜔 = {
𝐼𝐼0{
𝐴𝐴1; 𝑍𝑍𝑗𝑗,𝜔𝜔 ≤ 𝜆𝜆𝐴𝐴1
𝐴𝐴2; 𝜆𝜆𝐴𝐴1 < 𝑍𝑍𝑗𝑗,𝜔𝜔 ≤ 𝜆𝜆𝐴𝐴2

𝐼𝐼1{
𝐴𝐴3; 𝜆𝜆𝐴𝐴2 < 𝑍𝑍𝑗𝑗,𝜔𝜔 ≤ 𝜆𝜆𝐴𝐴3
𝐴𝐴4; 𝑍𝑍𝑗𝑗,𝜔𝜔 > 𝜆𝜆𝐴𝐴3

       (6) 

The FC receives the local choice and delivers a global judgement by combining the local 
decisions of entire CR users.  Each component of the report relates to 𝑟𝑟, as can be observed. 
Each sensing slot for each CR user generates a sensing report (the current sensing report is 
denoted by𝑆𝑆𝑗𝑗,𝜔𝜔), and the local decision is made in accordance with Eq. (6).  

The global choice is then given back to the CR users. Users of the CR can choose to 
transmit or not, depending on the collective judgement. The ACK signal can be used to 
confirm whether the CR global decision is 𝐼𝐼0or not.  There exists no interference to the PU 
transmissions since the overlay Cognitive Radio Network is taken into consideration. The 
PU communication only affects the ACK signal when the SS outcome is incorrect and the 
actual ground truth is𝐼𝐼1.  The following are the list of probable situations and findings. 

Finding 1: The global choice is also𝐴𝐴1, as shows the local decision �𝑟𝑟𝑗𝑗,𝜔𝜔�. The CR user 
transmits its data. Receiving an ACK indicates that the sensing outcome was accurate and 
that the PU's real state was𝐼𝐼0. The actual state of the PU is determined via the ACK signal. 
When this choice �𝑆𝑆𝑗𝑗,𝜔𝜔� is made, the sensing report associated with it is placed in a class 
known as𝑆𝑆1, but when there is no ACK signal, it is placed in𝑆𝑆2.  

Finding 2: Whether the global choice and the local decision �𝑟𝑟𝑗𝑗,𝜔𝜔�  are 𝐴𝐴1 or𝐴𝐴2 , 
respectively, depends on the local decision 𝐴𝐴1. If the ACK is not returned after the CR user 
transmits, the sensing judgement was incorrect and the PU was accessible. The CR user will 
save 𝑆𝑆𝑗𝑗,𝜔𝜔in a class called 𝑆𝑆2with the value. When an ACK signal is received, 𝑆𝑆1will store 
it.  This method will also record 𝑆𝑆𝑗𝑗,𝜔𝜔 if the local choice is 𝐴𝐴1and the global decision is 
𝐴𝐴3or𝐴𝐴4.  

Finding 3: The local choice �𝑟𝑟𝑗𝑗,𝜔𝜔� is𝐴𝐴2, and 𝐴𝐴2also applies to the global decision. The 
CR users follow the steps outlined in finding 1 for this operation. If ACK is obtained, the 
sensing choice was made correctly, and the PU is not available; else, the data 𝑆𝑆𝑗𝑗,𝜔𝜔is saved in 
the 𝑆𝑆4class.  

Finding 4: The global decision is either 𝐴𝐴1or 𝐴𝐴2, while the local decision is 𝐴𝐴2. When a 
CR user transmits, if an ACK is not returned, the class 𝑆𝑆𝑗𝑗,𝜔𝜔is labelled 𝑆𝑆4; else, the class is 
labelled 𝑆𝑆3. Again, 𝑆𝑆𝑗𝑗,𝜔𝜔will be saved in the class designated as 𝑆𝑆4if the local choice is 𝐴𝐴2and 
the global decision is either 𝐴𝐴3or 𝐴𝐴4.  

Finding 5: The local choice is 𝐴𝐴3, and so is the overall decision. In this situation, there 
won't be any transmission. Therefore, it is impossible to ascertain the PU's real condition. 
𝑆𝑆𝑗𝑗,𝜔𝜔 will be enrolled in a class with the designation 𝑆𝑆5. If the global choice is 𝐴𝐴4and the local 
decision is 𝐴𝐴3, the sensing report will likewise be kept in class 𝑆𝑆5.  

Finding 6: The global choice is either 𝐴𝐴1or 𝐴𝐴2, whereas the local choice is 𝐴𝐴3. The user 
of the CR will send. 𝑆𝑆𝑗𝑗,𝜔𝜔 will be saved in a class with the designation 𝑆𝑆6if ACK is returned; 
else, it will be saved in 𝑆𝑆5.  
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Finding 7: The local and global choices are both 𝐴𝐴4. There will be no transmission, and 
𝑆𝑆𝑗𝑗,𝜔𝜔will be kept in the class 𝑆𝑆7if the local decision is Z4 and the worldwide choice is Z3. 
𝑆𝑆𝑗𝑗,𝜔𝜔will also be kept in 𝑆𝑆7if the local decision is 𝐴𝐴4and the global decision is 𝐴𝐴3.  

Finding 8: The global decision is either 𝐴𝐴1or 𝐴𝐴2, whereas the local decision is 𝐴𝐴4. The 
user of the CR will send. If an ACK is obtained, 𝑆𝑆𝑗𝑗,𝜔𝜔will be kept in class 𝑆𝑆8. In the absence 
of an ACK, 𝑆𝑆𝑗𝑗,𝜔𝜔will be kept in 𝑆𝑆7.  

The ACK signal is utilised when the global decision is𝐼𝐼0, as shown in the findings above. 
The CR users do not broadcast when the global decision is𝐼𝐼1, therefore the ACK signal 
cannot be utilised to determine the reality on the ground. As a result, when 𝐼𝐼1is the FC's 
overall decision, the CR users store the current sensing report in classes 𝑆𝑆5and 𝑆𝑆7since there 
exists no other method to verify the current sensing choice without running the danger of 
interfering with the PU transmission.  

These findings provide CR users past data that they may utilise in combination with their 
present sensing behaviour to more accurately forecast the PU state, as well as information 
regarding the environment around them and how it affects human behaviour. This method 
may be viewed as cooperative learning in which the influence of other CR users is included 
via the global choice in addition to the individual CR user's consideration. This increases the 
learning system' geographic variety by allowing a receiver having superior SNR settings to 
influence the behaviour of CR users having lower SNR circumstances.  

The training process is continued till the CR user has received sufficient training in the 
environment's behaviour, comprising adjusting the SNR circumstances and the PU's 
behaviour. As a result of the constantly evolving sensory environment, fading can also have 
a short-term impact on the signal and corresponding energy received.  

During the training stage, local training data is gathered from every CR user. The length 
of the training stage affects how well machine learning algorithms operate.  Efficiency 
increases as training volume increases.  A bigger region is encompassed by the PU as the 
count of CR users rises. The training stage can precisely predict how CR users would behave 
in response to PU activity since the modelling approach integrates the global decision by 
behaving in accordance with it and also via the ACK signal. With a significant training stage, 
the responses of CR users to different PU activity types may also be correctly predicted. The 
training stage of traditional machine learning approaches can collect enough training data to 
understand the surroundings. Since both the wireless channel and PU activity are random, it 
is almost impossible to determine their precise nature.  

Classification stage: Information was obtained about the operating context and CR user 
behaviour in reaction to the dynamic world in the preceding step. The structure of CR 
networks makes it particularly difficult to learn the environment. Users of CR only get 
partial observations of the configuration files due to the noisy different characteristics. Users 
of CR are also required to send data. Therefore, limited sensing time and incomplete 
quantitative measurements make learning more difficult. A PU's status as an autonomous 
entity constitutes a third restriction. A CR user might not be familiar with the PU's behaviour, 
its operational parameters, the interference levels, RF environment, or the distribution of 
noise power.  

Partial observability is dealt with by include the actions of the worldwide CR community 
into the learning experience decision. The ACK assists CR users in learning the split the 
sensing information according to the operational environment better properly into their 
various groups. The education strategy is effective and doesn't need any previous knowledge. 
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The present instance is precisely classified into one among the sensing classes using 
improved SVM, a machine learning algorithm, which effectively detects PU activity.  

4.2 Effective Spectrum Sensing 
The local choices are sent to The FC as 𝐸𝐸𝑗𝑗  in which = ,3,⋯ ,𝑂𝑂. Due to the fact that 

different CR users in CSS have different sensing capacities, different local sensing outcomes 
are produced [44]. We employ a weight-oriented decision combination at the FC in the 
suggested approach. Depending on their effectiveness, every CR user is given a weight. A 
partial global decision is taken at FC, denoted by 𝑀𝑀𝐻𝐻,𝑗𝑗 , by eliminating the 𝑗𝑗𝑡𝑡ℎCR user's 
response as 

𝑀𝑀𝐻𝐻,𝑗𝑗 = {𝐼𝐼0 𝑂𝑂𝐼𝐼0
𝑗𝑗 > 𝑂𝑂𝐼𝐼1

𝑗𝑗

𝐼𝐼1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
        (7) 

Here, 𝑂𝑂𝐼𝐼0
𝑗𝑗  shows the count of CR users reporting 𝐼𝐼0that do not include the 𝑗𝑗𝑡𝑡ℎ CR user's 

local choice and is stated as  

𝑂𝑂𝐼𝐼0
𝑗𝑗 = ∑ 𝐽𝐽0�𝐸𝐸𝑗𝑗 = 𝐼𝐼0�𝑂𝑂

𝑗𝑗=1,𝑗𝑗≠𝑗𝑗         (8) 

And the indicator function 𝐽𝐽0�𝐸𝐸𝑗𝑗 = 𝐼𝐼0�for 𝐼𝐼0 is provided by  

𝐽𝐽0�𝐸𝐸𝑗𝑗 = 𝐼𝐼0� = {
1; 𝐸𝐸𝑗𝑗 = 𝐼𝐼0
0; 𝐸𝐸𝑗𝑗 ≠ 𝐼𝐼0

        (9) 

On the other side, 𝑂𝑂𝐼𝐼1
𝑗𝑗  indicates the proportion of 𝑗𝑗𝑡𝑡ℎCR users who reported 𝐼𝐼1but did not 

provide their local decision.  

𝑂𝑂𝐼𝐼1
𝑗𝑗 = ∑ 𝐽𝐽0�𝐸𝐸𝑗𝑗 = 𝐼𝐼1�𝑂𝑂

𝑗𝑗=1,𝑗𝑗≠𝑗𝑗                     (10) 

Here, the indicator function for 𝐼𝐼1 is provided by and 𝐽𝐽0�𝐸𝐸𝑗𝑗 = 𝐼𝐼1� is provided.  

𝐽𝐽0�𝐸𝐸𝑗𝑗 = 𝐼𝐼1� = {
1; 𝐸𝐸𝑗𝑗 = 𝐼𝐼1
0; 𝐸𝐸𝑗𝑗 ≠ 𝐼𝐼1

                    (11) 

For entire CR users, partial global decisions are discovered. The majority vote is then 
used to integrate local choices as 𝑀𝑀𝐻𝐻,𝑎𝑎𝑎𝑎𝑎𝑎, and may be expressed as  

𝑀𝑀𝐻𝐻,𝑎𝑎𝑎𝑎𝑎𝑎 = {
𝐼𝐼0 𝑂𝑂𝐼𝐼0 > 𝑂𝑂𝐼𝐼1
𝐼𝐼1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                    (12) 

Here, the count of CR users who reported 𝐼𝐼0  is 𝑂𝑂𝐼𝐼0  and the count of CR users who 
reported 𝐼𝐼1 is 𝑂𝑂𝐼𝐼1 . The weight for every CR user 𝛼𝛼𝑗𝑗  is derived on the basis of Eq. (7) and 
Eq. (12).  

𝛼𝛼𝑗𝑗 = {
𝛼𝛼𝑗𝑗 + 1 𝑀𝑀𝐻𝐻,𝑗𝑗 ≠ 𝑀𝑀𝐻𝐻,𝑎𝑎𝑎𝑎𝑎𝑎
𝛼𝛼𝑗𝑗 𝑀𝑀𝐻𝐻,𝑗𝑗 = 𝑀𝑀𝐻𝐻,𝑎𝑎𝑎𝑎𝑎𝑎

                  (13) 

Next, the cumulative weight for every hypothesis 𝛽𝛽𝑏𝑏, in which 𝑏𝑏 ∈ {𝐼𝐼0, 𝐼𝐼1}is determined 
as follows: 

𝛽𝛽𝑏𝑏 = ∑ 𝛼𝛼𝑗𝑗𝐽𝐽0�𝐸𝐸𝑗𝑗 = 𝑏𝑏�     𝑏𝑏 ∈ {𝐼𝐼0, 𝐼𝐼1}𝑂𝑂
𝑗𝑗=1                   (14) 

Here, 𝐽𝐽0�𝐸𝐸𝑗𝑗 = 𝑏𝑏� is shown by 
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𝐽𝐽0�𝐸𝐸𝑗𝑗 = 𝑏𝑏� = {
1; 𝐸𝐸𝑗𝑗 = 𝑏𝑏
0; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

                  (15) 

The final global decision is shown by 𝑀𝑀𝐻𝐻 and is computed as 

𝑀𝑀𝐻𝐻 = {
𝐼𝐼0 𝛽𝛽𝐼𝐼0 > 𝛽𝛽𝐼𝐼1
𝐼𝐼1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                    (16) 

The CR users receive the global decision back, and they next broadcast or remain silent in 
accordance with the global decision.  Consider 𝛽𝛽 = �2𝛾𝛾∑ |𝑖𝑖𝑙𝑙|2 + 1𝑜𝑜

𝑙𝑙=1  in which 𝑖𝑖𝑙𝑙  be the 
channel gain among the primary user and the 𝑗𝑗𝑡𝑡ℎ  CR user during the 𝑙𝑙𝑡𝑡ℎ minislot, and 
assume 𝛾𝛾 be the mean SNR obtained from the PU. When nonfading channels are used, the 
system's probability of false alarm is expressed as [27] if it is considered that the state's 
coefficients are known.  

𝑄𝑄𝑔𝑔𝑇𝑇 = 𝑅𝑅�𝛽𝛽𝑅𝑅−1(𝑄𝑄𝑒𝑒����) + �𝑂𝑂0𝛾𝛾∑ |𝑖𝑖𝑙𝑙|2𝑜𝑜
𝑙𝑙=1 �                  (17) 

Here, 𝑄𝑄𝑒𝑒���� shows the system goal probability of detection and 𝑅𝑅(∙)  shows the 
complementary distribution function of the standard Gaussian, which is 𝑅𝑅(Ҳ) =
(1 2𝜋𝜋⁄ )∫ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑢𝑢2 2⁄ )𝑑𝑑𝑑𝑑∞

𝑦𝑦 . The goal probability of detection for effective spectrum sensing 
may be expressed as [45]  

𝑄𝑄𝑒𝑒���� = ∏ ��𝑂𝑂 −∑ 𝑂𝑂𝐴𝐴𝑡𝑡
𝑚𝑚
𝑡𝑡=1�
𝑂𝑂𝐶𝐶𝑛𝑛

��𝑄𝑄𝐼𝐼1(𝐴𝐴𝑛𝑛)�
𝑂𝑂𝐴𝐴𝑛𝑛�𝑁𝑁

𝑛𝑛=1                   (18) 

Here, 𝑂𝑂𝐴𝐴𝑛𝑛shows the percentage of CR users who have made a local sensing choice in the 
zone𝐴𝐴𝑛𝑛, 𝑚𝑚shows the greatest integer less than 𝑛𝑛, and 𝑄𝑄𝐼𝐼1(𝐴𝐴𝑛𝑛)seems to be the likelihood that 
a local sensing decision was made in the quantization zone 𝐴𝐴𝑛𝑛beneath 𝐼𝐼1 . The system's 
likelihood of detection can be expressed as [27].  

𝑄𝑄𝑒𝑒𝑇𝑇 = 𝑅𝑅�𝛽𝛽𝑅𝑅−1�𝑄𝑄𝑔𝑔����� + �𝑂𝑂0𝛾𝛾∑ |𝑖𝑖𝑙𝑙|2𝑜𝑜
𝑙𝑙=1 �                  (19) 

Here, 𝑄𝑄𝑔𝑔����shows the system goal false alert probability and is provided by [46].  

𝑄𝑄𝑔𝑔���� = ∏ ��𝑂𝑂 − ∑ 𝑂𝑂𝐴𝐴𝑡𝑡
𝑚𝑚
𝑡𝑡=1�
𝑂𝑂𝐶𝐶𝑛𝑛

��𝑄𝑄𝐼𝐼0(𝐴𝐴𝑛𝑛)�
𝑂𝑂𝐴𝐴𝑛𝑛�𝑁𝑁

𝑛𝑛=1                   (20) 

Here, 𝑄𝑄𝐼𝐼0(𝐴𝐴𝑛𝑛)shows the likelihood that the local sensing decision in the quantization 
zone𝐴𝐴𝑛𝑛 will be less than 𝐼𝐼0.  

5. Improved SVM and Proposed GO-PSA for the developed effective 
spectrum sensing in cognitive rdio networks 

5.1 Improved SVM 
The improved SVM is used for the classification process of the developed effective 

spectrum sensing in CRN model. SVM represents a supervised learning technique for both 
classification as well as regression problems. To differentiate between the two classes of data 
points, one might pick from a variety of possible hyper-planes. The Eq. (1) may be used to 
locate the hyper-plane. 

𝑥⃗𝑥 ∙ 𝑦⃗𝑦 + 𝑐𝑐 = 0                     (21) 
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Here, 𝑦⃗𝑦shows the collection of points and 𝑥⃗𝑥shows the normal vector to the hyperplane. 
The margin's width is (2/|𝑥𝑥|). The fact why SVM struggles to effectively function with 
large training sets is due to the fact that as the number of training vectors rises, so do the 
storage and computing needs. Thus, performance may be increased, and calculation time 
decreased by using improved SVM. Here, the iterations in SVM are tuned by novel GO-PSA, 
thus referred as improved SVM.  

5.2 Proposed GO-PSA 
The proposed GO-PSA is used for optimizing the iterations of SVM for the developed 

spectrum sensing in CRN model. The PSO technique was developed to simulate the 
behavioural patterns of a flock of birds, but once the algorithm was modified it was 
discovered that the individuals, here referred to as particles, were really engaged in 
optimisation. The PSO approach places the particles at random locations in the search space 
and then has them move in randomly chosen directions. A particle's trajectory is then 
progressively adjusted such that it will begin to migrate in the direction of its own and its 
competitors' best prior locations. As it searches in their neighbourhood, it will ideally find 
even better places with relation to some fitness metric. The PSO algorithm has several 
advantages such as better efficiency, simplicity, etc. But, it limits from the drawback of high 
computational complexity. Hence, to overcome the drawbacks, GOA is integrated into it and 
the so formed algorithm is referred as GO-PSA. This GO-PSA reduces the computational 
complexity as well as solves all forms of optimization related problems.  

The core principle of the GOA swarm during the larval stage is the grasshoppers' sluggish 
mobility and short steps. In comparison, the adult swarm's primary characteristic is long-
distance, rapid movement. Another crucial aspect of the grasshopper swarm is the search for 
food sources. The search agents are urged to move quickly during exploration, while they 
usually move slowly during exploitation. In addition to target finding, grasshoppers naturally 
carry out these two tasks. Thus, if we can represent this behaviour scientifically, we can 
create a brand-new algorithm that draws its inspiration from nature.  

In the proposed GO-PSA algorithm, the process takes place using random-based concept. 
Therefore, if 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑 ≤ 0.5, the update takes place using GOA as below. 

𝑌𝑌𝑗𝑗𝑒𝑒 = 𝑑𝑑 �∑ 𝑑𝑑 𝑢𝑢𝑢𝑢𝑒𝑒−𝑙𝑙𝑙𝑙𝑒𝑒
2

𝑂𝑂
𝑘𝑘=1�
𝑘𝑘≠𝑗𝑗

𝑡𝑡��𝑦𝑦𝑘𝑘𝑒𝑒 − 𝑦𝑦𝑗𝑗𝑒𝑒��
𝑦𝑦𝑘𝑘−𝑦𝑦𝑗𝑗
𝑒𝑒𝑗𝑗𝑗𝑗

�+ 𝑈𝑈𝑒𝑒�                 (22) 

Here, 𝑌𝑌𝑗𝑗 shows the position of the 𝑗𝑗𝑡𝑡ℎ grasshopper, 𝑒𝑒𝑗𝑗𝑗𝑗 shows the distance among the 
𝑗𝑗𝑡𝑡ℎand 𝑘𝑘𝑡𝑡ℎgrasshopper, 𝑑𝑑shows the decreasing coefficient that minimizes the comfort zone, 
𝑈𝑈𝑒𝑒� shows the value of the 𝐸𝐸𝑡𝑡ℎdimension in the target, 𝑙𝑙𝑙𝑙𝑒𝑒shows the lower bound in the 
𝐸𝐸𝑡𝑡ℎdimension, and 𝑢𝑢𝑢𝑢𝑒𝑒shows the upper bound in the 𝐸𝐸𝑡𝑡ℎdimension respectively.  

Otherwise, if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > 0.5, then the update takes place by PSO as below. 
𝑦⃗𝑦 ← 𝑦⃗𝑦 + 𝑤𝑤��⃗                       (23) 
Here, the position of particle is shown by 𝑦⃗𝑦 and the velocity of particle is shown by 

𝑤𝑤��⃗ respectively. The pseudo code of novel GO-PSA is shown in algorithm 1.  
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Algorithm 1: Proposed GO-PSA 
Start  
Population initialization 
Parameter initialization 
Fitness calculation 
While 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 
 If 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 0.5 
  

𝑌𝑌𝑗𝑗𝑒𝑒 = 𝑑𝑑

⎝

⎜
⎛
�𝑑𝑑

𝑢𝑢𝑢𝑢𝑒𝑒 − 𝑙𝑙𝑙𝑙𝑒𝑒
2

𝑂𝑂

𝑘𝑘=1�
𝑘𝑘≠𝑗𝑗

𝑡𝑡��𝑦𝑦𝑘𝑘𝑒𝑒 − 𝑦𝑦𝑗𝑗𝑒𝑒��
𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑗𝑗
𝑒𝑒𝑗𝑗𝑗𝑗

⎠

⎟
⎞

+ 𝑈𝑈𝑒𝑒� 

 else 
  𝑦⃗𝑦 ← 𝑦⃗𝑦 + 𝑤𝑤��⃗  
 End if 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1 
End 
Stop  

6. Results 

6.1 Experimental Procedure 
In this part, we examine the behavior of the suggested scheme and evaluate it against 

various schemes using system factors including the probability of detection, probability of 
spectral holes exploitation, and probability of error. The CR user will have more possibilities 
to transmit if the PU's idle probability is raised. The system's performance during the training 
phase is significantly impacted by the development of the sensing classes throughout this 
phase. The larger this phase, the more training instances there will be, increasing the count of 
reports that the current sensing report may match with. The description and the optimization 
parameters for GOA and PSO are shown in Table 2 below. 

Table 2. Optimization parameters 

Methods  Parameters  Description  
 

GOA 
Population size 10 
Chromosome length 2 
Number of iterations 25 

 
PSO 

Population size 10 
Chromosome length 2 
Number of iterations 25 

6.2 Simulation Parameters 
The simulation parameters considered for the proposed spectrum sensing in CRNs using 

improved machine learning-based optimization model is shown in Table 3. 
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Table 3. Simulation parameters 

Parameters Description 
Number of iterations 500 
Number of CR user 4 
Sampling frequency 250 kHz 
Sensing slot duration 0.5 ms 
Idle probability of PU 0.3 

Number of energy samples 500 
SNR range -20 to -10 dB 

6.3 Probability of detection analysis 
The system detection performance for the developed and the current models is shown in 

Fig. 2. The suggested plan operates better than the competition. The detection probability 
attained from the analysis showed that the proposed method shows better outcomes over the 
provided number of counts at various SNR levels, revealing its superiority.  

 
Fig. 2.  Probability of Detection Analysis 

 The explanation is because under low SNR regimes, the sensing reports are not far off 
from one another. The energies received in the low SNR for both theories have minimal 
difference between either sensing than normal plans. The suggested technique produces more 
dependable spectrum as the SNR increases. 

6.4 Probability of error analysis 
The error performance is shown in the Table 4. The suggested system has a low 

likelihood of error even in the low SNR zone, as can clearly be observed in this figure and 
table. The error probability defines the rate of occurrence of an error in a hypothetical 
infinite repetition of the process. Here, it is clearly elaborated that the developed model 
shows lesser error rate of occurrence than the considered existing methods, thus 
demonstrating its betterment. The approach demonstrates that the suggested strategy can 
produce more accurate spectrum sensing than previous methods.  
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Table 4. Probability of error analysis 

SNR Probability of error 
PSO [47] GOA [48] SVM [49] Fuzzy [50] GO-PSA-ISVM 

-20 0.15 0.16 0.12 0.11 0.03 
-17.5 0.13 0.09 0.14 0.07 0.02 
-15 0.08 0.11 0.06 0.05 0.02 

-12.5 0.03 0.06 0.04 0.05 0.01 
-10 0.02 0.05 0.04 0.03 0.01 

 

6.5 Probability of spectral holes exploitation analysis 
The effectiveness of the suggested technique to utilize spectral gaps is shown in Table 5. 

Utilizing chances for data transmission is of utmost importance from the viewpoint of a CR 
user. The suggested system enables CR users to take advantage of data transmission 
possibilities even in poor SNR circumstances. The sensing reports that are created are better 
reflections of the PU's activity in the region with high SNR. Because the PU signal will take 
up a bigger fraction of the received signal than the random noise, the sensing performance 
can be enhanced in the high SNR regimes. The secondary users exploit the presence of 
spectrum holes in an opportunistic manner for enhancing the spectrum usage. At various 
SNR levels, the probability of exploitation of spectral holes shows improved performance 
with developed methods than the traditional approaches, thereby demonstrating its 
effectiveness. These figure and table demonstrate how the suggested system may both more 
effectively secure PU data and offer more chances for data exchange.  

Table 5. Probability of Spectral holes exploitation analysis 

SNR Probability of spectral holes exploitation 
PSO [47] GOA [48] SVM [49] Fuzzy [50] GO-PSA-ISVM 

-20 0.22 0.31 0.53 0.68 0.70 
-17.5 0.28 0.43 0.61 0.65 0.72 
-15 0.42 0.53 0.72 0.69 0.80 

-12.5 0.76 0.82 0.79 0.91 0.94 
-10 0.82 0.87 0.95 0.93 0.98 

 

6.6 Average delay analysis 
The time required to determine the channel availability for various classifiers is shown in 

the Fig. 3. More precisely, even while the values of the decision parameters fluctuate 
significantly with the count of training energy vectors, the count of decision parameters does 
not vary. Results showed that when the training samples of PU is higher than that of SUs, the 
average delay of SUs in the queue and the chance of SU packet loss are worse; however, 
when the training sample of both users is equal, performance is better. Hence, it can be 
clearly demonstrated that the proposed model returns less delay than the considered existing 
methods.  



536                                                                  Ashok J et al.:A Novel Grasshopper Optimization-based Particle Swarm 
Algorithm for Effective Spectrum Sensing in Cognitive Radio Networks 

 
Fig. 3.  Average Delay Analysis 

6.7 Detection Time analysis 
The detection time in this article, when the count of CRs is constant, is significantly 

quicker than the detection times in the remaining approaches, as shown in Fig. 4. The 
difficulty of computing rapidly rises as the count of CR users rises. The developed technique 
makes it feasible to see the whole spectrum situation at any one time. As the CR user count 
increases, the detection time gets lesser for the introduced model than the other state-of-the-
art methods, thus revealing its superiority.  

 
Fig. 4.  Detection time Analysis 

 The suggested strategy, nevertheless, employs a cutting-edge machine learning 
technique to lessen the disturbance from rogue users to nearby users. On detection time, the 
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quantity of malicious users has less of an impact. Consequently, in a large-scale CRN, the 
suggested approach has high detection efficiency. 

6.8 Convergence analysis 

 
Fig. 5.  Convergence Analysis 

The convergence analysis of various algorithms for the developed spectrum sensing in 
CRN model is shown clearly in the Fig. 5. A total of 500 iterations are considered for 
running the convergence analysis process. The introduced model reveals better convergence 
outcomes than other conventional methods at various iteration reveals, thus demonstrating 
the betterment of the proposed method. It can be clearly demonstrated that the proposed 
model achieves faster convergence rate than all the considered state-of-the-art methods 
respectively at various iteration counts.  

7. Conclusion 
A trustworthy spectrum sensing approach based on novel machine learning was 

suggested in this research. The suggested system adapts to its surroundings by taking into 
consideration the actual state of the PU. The current sensing report was classified into one 
among the sensing classes once the sensing reports have been stored in the relevant sensing 
classes. The status of the PU was determined by the classification outcome. An innovative 
decision combination system at the FC that took into consideration the dependability of the 
CR users combines local decisions. Effective spectrum sensing was ensured by both CR 
level and FC level mechanisms. According to simulation findings, the suggested approach 
outperforms traditional approaches in terms of various measures. Some limitations observed 
are significant waiting time for the convergence to occur especially in case of dense 
networks. considerable complexity in the construction of the hybrid evolutionary model is 
another limitation which needs to be worked on.  
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