• Title/Summary/Keyword: Major/minor minerals

Search Result 75, Processing Time 0.027 seconds

The morphological and chemical composition characteristics of Opuntia ficus-indica and Opuntia humifusa fruits (손바닥선인장(백년초, 천년초) 열매의 외관 및 성분특성 연구)

  • Kim, Mi-Hyun;Kim, Hee Jung;Jang, Mi;Lim, Tae-Gyu;Hong, Hee-Do;Rhee, Young Kyoung;Kim, Kyung-Tack;Cho, Chang-Won
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.711-717
    • /
    • 2016
  • Opuntia humifusa fruits were investigated. The length of minor and major axis, and weight of O. ficus-indica and O. humifusa fruits were compared as the morphological features. The characteristics of components such as color, moisture, crude protein, ash, fat, dietary fiber, mineral, and amino acids were evaluated. The values of O. ficus-indica fruits were higher than those of O. humifusa fruits in each morphological feature such as minor axis, major axis, and weight. According to the Hunter color index results, O. humifusa fruits showed higher values of L (lightness) and b (yellowness), whereas O. ficus-indica fruits showed higher value of a (redness). The ${\Delta}E$ value between two samples was 19.80. The O. ficus-indica fruits had higher carbohydrate content and lower content of crude ash than those of O. humifusa fruits. Both samples showed very high dietary fiber contents, and the major minerals were K and Ca. Glutamic acid was the major amino acids in both samples. In free amino acids contents, O. ficus-indica had higher tyrosine and lower glutamic acid level than those of O. humifusa fruits. ${\gamma}$-aminobutyric acid was found in both samples, whereas taurine was found in O. ficus-indica fruits only. Taken together, the morphological features and chemical quality of O. ficus-indica and O. humifusa fruits showed difference although both of them were originated from the same genus.

Rare Metal Chemistry, Microstructures, and Mineralogy of Coal Ash from Thermal Power Plants of Korea (화력발전소 석탄회의 희유금속화학, 미세구조, 광물학적 특성)

  • Jeong, Gi Young;Kim, Seok-Hwi;Kim, Kangjoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.147-163
    • /
    • 2015
  • Chemical and mineralogical properties of coal ash samples from the nine thermal power plants of Korea were investigated to acquire basic data for estimating the potential of rare metal recovery. Chemical compositions of coal ash were consistent with those of average shale and foreign coal ashes. However, there were small differences between the metal contents of domestic anthracitic and imported bituminous coal ashes. Unburned coal particles were much abundant in the ash of domestic anthracitic coal. Chalcophile elements were relatively enriched in the fly ash compared to bottom ash. Silicate glass was the major component of coal ash with minor minerals such as quartz, illite (muscovite), mullite, magnetite, lime, and anhydrite. Al and Si were the major components of the glass with varying contents of Ca, Fe, K, and Mg. Glass occurred in a form of porous sphere and irregular pumace-like grain often fused with iron oxide spheres or other glass grains. Iron oxide spheres were fine intergrowth of fast-grown iron oxide crystals in the matrix of silicate glass. Chemical, microstructural, and mineralogical properties would guide successful rare metal recovery from coal ash.

Genetic Environments at the Ssangjeon Tungsten-bearing Hydrothermal Vein Deposit (쌍전 함 텅스텐 열수 맥상광상의 생성환경)

  • Sunjin Lee;Sang-Hoon Choi
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.689-699
    • /
    • 2022
  • The Ssangjeon tungsten deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz veins were formed by narrow open-space filling of parallel and subparallel fractures in the metasedimentary rocks as Wonnam formation, Buncheon granite gneiss, amphibolite and/or pegmatite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren quartz vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of arsenopyrite with pyrite; middle, characterized by introduction of wolframite and scheelite with Ti-Fe-bearing oxides and base-metal sulfides; late, marked by Bi-sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥370℃) and later lower temperatures (≈170℃) from H2O-CO2-NaCl fluids with salinities between 18.5 to 0.2 equiv. wt. % NaCl of Ssangjeon hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥370℃ to ≈170℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Ssangjeon hydrothermal system with increasing paragenetic time.

Petrography and Geochemistry of the Ultramafic Rocks from the Hongseong and Kwangcheon areas, Chungcheongnam-Do. (충남 홍성 및 광천 지역 초염기성암의 암석 및 지구화학)

  • Song Suckhwan;Choi Seon Gyu;Oh Chang Hwan;Seo Ji Eun;Choi Seongho
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.477-497
    • /
    • 2004
  • In the Hongseong and Kwangcheon areas, two ultramafic rocks are exposed as isolated bodies in the Precambrian Kyeonggi gneiss complex. The ultramafic rocks extend for several hundred meters to NNE direction and are contact with adjacent metasediments by steeply dipping faults. The rocks are dunite or harzburgite showing dominantly equigranular-mosaic and protogranular textures with a minor amount of porphyroclastic textures. They contain varying amounts of fosteritic olivine (F$o_{0.91-0.93}$), magnesian pyroxene (E$n_{0.89-0.93}$) and tremolitic to magnesian hornblende with minor amounts of spinel, serpentine, chlorite, magnetite, phlogopite and talc. The rocks are in contrast with adjacent gneiss complex or metabasite (amphibole, biotite, plagioclase, alkali-feldspar and quartz). Geochemically, these ultramafic rocks are characterized by high magnesium number (M$g_#$> 0.88) and transitional element (mainly, Ni>1716 ppm, Cr>1789 ppm), low alkali element (e.g. $K_2$O<0.09 wt.%, Na$_2$O<0.19 wt.%) and depletion of incompatible elements. The calculated correlation coefficients showed good positive correlations among the ferrous (e.g. Sc, V, Zn) elements, incompatible elements (e.g. REE), and among SiO$_2$ or $Al_2$O$_3$ with ferrous elements, whereas negative correlations are appeared between Ni and major elements. These results involve increasing of the ferrous- and $Al_2$O$_3$-bearing minerals(e.g. amphibole and mica) with decreasing of Mg-bearing minerals (e.g. olivine) depending on the degree of alteration. Calculated geothermometries and mineral assemblages suggest that the ultramafic rocks have been metamorphosed through the condition from the greenschist to amphibolite facies. Compared with ultramafic rocks elsewhere, it is thought that those of the Hongseong and Kwangcheon areas are derivatives of the depleted sources since they are depleted in incompatible elements including REE abundances. Moreover overall characteristics of the ultramafic rocks are similar to the those of orogenic related Alpine type ultramafic rocks, especially, shallow mantle slab varieties.

Interpretation on Making Techniques of Some Ancient Ceramic Artifacts from Midwestern Korean Peninsula: Preliminary Study (한반도 중서부 출토 일부 고대 세라믹 유물의 제작기술 해석: 예비 연구)

  • Lee, Chan Hee;Jin, Hong Ju;Choi, Ji Soo;Na, Geon Ju
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.273-291
    • /
    • 2016
  • Some ceramic artifacts representing time-wise from comb pattern pottery in the Neolithic Age to white porcelain in Joseon Dynasty were selected from 7 sites in the north and south area of Charyeong Mountain Range in order to making techniques interpretation and development process of ancient ceramics through physicochemical and mineralogical quantitative analysis. Studied pottery samples in the Prehistoric times showed trace of ring piling in soft-type, and pottery in the Three Kingdoms Period had both soft and hard-type but kettle-ware and storage-ware were made with ring piling, but table-ware was made by wheel spinning. Different from pottery after the Three Kingdom Period when refinement of source clay was high, pottery in the Neolithic Age and in the Bronze Age exhibited highly mineral content in sandy source clay, which showed a lot of larger temper than source clay. Groundmass of celadon and white porcelain almost did not reveal primary minerals but had high content of minerals by high temperature firing. Ceramic samples showed some different in major and minor elements according to sites irrespective of times. Geochemical behaviors are very similar indicating similar basic characteristics of source clay. However, loss-on-ignition showed 0.01 to 12.59wt.% range with a large deviation but it rapidly decreased moving from the Prehistoric times to the Three Kingdom Period. They have correlation with the weight loss due to firings, according to burning degree of source clay and detection of high temperature minerals, estimated firing temperatures are classified into 5 groups. Pottery in the Neolithic Age and in the Bronze Age belongs from 750 to $850^{\circ}C$ group; pottery in the Three Kingdom Period are variously found in 750 to $1,100^{\circ}C$ range of firing temperature; and it is believed celadon and white porcelain were baked in high temperature of 1,150 to $1,250^{\circ}C$. It seems difference between refinement of source clay and firing temperature based on production times resulted from change in raw material supply and firing method pursuant to development of production skill. However, there was difference in production methods even at the same period and it is thought that they were utilized according to use purpose and needs instead of evolved development simply to one direction.

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries (고준위 방사성 폐기물 지질처분을 위한 해외 선진국의 심부 지하수 환경 연구동향 분석 및 시사점 도출)

  • Jaehoon Choi;Soonyoung Yu;SunJu Park;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.737-760
    • /
    • 2022
  • For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.

Geochemistry and Molybdenum Mineralisation of the Shap Granite, Westmorland, Northern England (영국(英國)의 북부(北部) Westmorland 지역(地域)에 분포(分布)한 Snap 화강암(花崗岩)의 지화학적(地火學的) 연구(硏究)와 휘수연석(輝水鉛石)의 광화작용(鑛化作用)에 관(關)한 연구(硏究))

  • Kim, Sahng Yup
    • Economic and Environmental Geology
    • /
    • v.9 no.4
    • /
    • pp.177-212
    • /
    • 1976
  • The Shap granite encloses well developed quartz veins and veinlets containing molybdenite in association with other ore sulphide minerals. The preliminary study of the geochemical aspects of the granite stock and mineralisation of molybdenite in comparison with the porphyry deposits is carried out; the distribution of major, minor and ore metal elements in wall rocks, altered envelope and veins, and the molybdenum mineralisation, mainly in connexion with hydrothermal alteration are discussed. The molybdenite and other ore mineralisation, especially bismuthinite and chalcopyrite, are spatially closely related to the hydrothermal alteration adjacent to the veinings, and are dominant where the strong orthoclase alteration has taken place. A pattern of alteration and mineralisation can be recognised and forms the basic for the subdivision of the quarry into several distinct zones, which correspond with the sequence of alteration and mineralisation. The veins, veinlets and their alteration haloes can be further subdivided into a series of concentric zones.

  • PDF

Fermentation Process for Odor Removal of Oyster (Crassostrea gigas) Hydrolysate and Its Properties (이취 제거를 위한 굴 가수분해물의 발효공정과 제품의 특성)

  • Lee, Su-Seon;Park, Si-Hyang;Kim, Hyeun-A;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.542-550
    • /
    • 2016
  • This study was carried out to investigate the optimal processing conditions for odor removal and maximal antioxidant effects of oyster (Crassostrea gigas) hydrolysate. The optimal hydrolysis conditions were 3.3% neutrase as the protease, $50^{\circ}C$ as the hydrolysis temperature, and 8.3 h as the hydrolysis time. Fish odor of enzymatic oyster hydrolysate was greatly reduced during Saccharomyces cerevisiae fermentation at $24^{\circ}C$ with 0.5% glucose. The protein content of the fermentation product from oyster hydrolysate powder was 25.7%, which contained the major amino acids Glu, Asp, Lys, Arg, Gly, and Ala, whereas Leu, Ala, Phe, Val, and Tau were abundant free amino acids. The important minor minerals were Zn and Fe. Toxicity against Chang cells was not observed in the fermentation product from the oyster hydrolysate up to $200{\mu}g/mL$. The results suggest that fermentation with S. cerevisiae could reduce the fish odor of enzymatic oyster hydrolysate. The hydrolysate has potential application as a food ingredients and nutraceutical.

Physicochemical Characteristic and Antioxidant Activites of Cereals and Legumes in Korea (한국산 잡곡류의 이화학적 특성과 항산화활성)

  • Lee, Ha-Kyu;Hwang, In-Guk;Kim, Hyun-Young;Woo, Koan-Sik;Lee, Seong-Hee;Woo, Seon-Hee;Lee, Jun-Soo;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1399-1404
    • /
    • 2010
  • Physicochemical characteristics and antioxidant activities of twelve varieties of legumes and cereals in Korea were analyzed and compared. Crude protein content was higher in legumes (20.60~34.47%) than in cereals (8.96~15.45%). Crude fat contents of soybean (17.73%) and black soybean (18.79%) were higher than other legumes (0.68~1.38%) and cereals (1.01~5.39%). The major minerals were potassium, calcium and sodium, and especially calcium and potassium were high in legumes. Unsaturated fatty acids composition ranged from 66.79% in cowpea to 85.14% in soybean, and $\Omega$-3 fatty acids (linolenic acid) content was higher of 7.47~48.25% in legumes than 0.36~3.71% in cereals. Total polyphenol content was higher 1.32~4.15 mg/g in 80% EtOH extracts from legumes than 0.53~2.83 mg/g in cereals. DPPH and ABTS radical scavenging activities were high values of 62.60% and 264.20 mg AA eq/g, respectively, in EtOH extract from sorghum.

Analyses of Nutrient Composition in Genetically Modified β-Carotene Biofortified Rice (유전자변형 베타-카로틴 강화 쌀의 주요 영양성분 분석)

  • Lee, Young-Tack;Kim, Jae-Kwang;Ha, Sun-Hwa;Cho, Hyun-Seok;Suh, Seok-Chul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.105-109
    • /
    • 2010
  • This study was conducted to analyze nutrient composition of a genetically modified $\beta$-carotene biofortified rice (GM rice), developed by the Rural Development Admistration in Korea. The nutritional constituents of GM rice were compared with those of the parental rice cultivar 'Nakdong' as a non-GM control to access nutritional equivalence. Proximate components (moisture, starch, protein, lipid, and ash) of the GM rice were similar to those of the conventional non-GM rice. $\beta$-Carotene contents of GM brown and milled rice were 2.35, 2.03 ${\mu}g/g$(d.b.), respectively. There were no significant differences between the GM and non-GM rice with respect to most of their nutrient composition, despite minor differences in most amino acids and minerals. This result demonstrated that the nutritional composition of this GM rice would be equivalent to that of the parental non-GM rice without major changes in its chemical contents.