Petrography and Geochemistry of the Ultramafic Rocks from the Hongseong and Kwangcheon areas, Chungcheongnam-Do.

충남 홍성 및 광천 지역 초염기성암의 암석 및 지구화학

  • 송석환 (중부대학교 환경공학과) ;
  • 최선규 (고려대학교 지구환경과학과) ;
  • 오창환 (전북대학교 지구환경과학과) ;
  • 서지은 (고려대학교 지구환경과학과) ;
  • 최성호 (고려대학교 지구환경과학과)
  • Published : 2004.10.01

Abstract

In the Hongseong and Kwangcheon areas, two ultramafic rocks are exposed as isolated bodies in the Precambrian Kyeonggi gneiss complex. The ultramafic rocks extend for several hundred meters to NNE direction and are contact with adjacent metasediments by steeply dipping faults. The rocks are dunite or harzburgite showing dominantly equigranular-mosaic and protogranular textures with a minor amount of porphyroclastic textures. They contain varying amounts of fosteritic olivine (F$o_{0.91-0.93}$), magnesian pyroxene (E$n_{0.89-0.93}$) and tremolitic to magnesian hornblende with minor amounts of spinel, serpentine, chlorite, magnetite, phlogopite and talc. The rocks are in contrast with adjacent gneiss complex or metabasite (amphibole, biotite, plagioclase, alkali-feldspar and quartz). Geochemically, these ultramafic rocks are characterized by high magnesium number (M$g_#$> 0.88) and transitional element (mainly, Ni>1716 ppm, Cr>1789 ppm), low alkali element (e.g. $K_2$O<0.09 wt.%, Na$_2$O<0.19 wt.%) and depletion of incompatible elements. The calculated correlation coefficients showed good positive correlations among the ferrous (e.g. Sc, V, Zn) elements, incompatible elements (e.g. REE), and among SiO$_2$ or $Al_2$O$_3$ with ferrous elements, whereas negative correlations are appeared between Ni and major elements. These results involve increasing of the ferrous- and $Al_2$O$_3$-bearing minerals(e.g. amphibole and mica) with decreasing of Mg-bearing minerals (e.g. olivine) depending on the degree of alteration. Calculated geothermometries and mineral assemblages suggest that the ultramafic rocks have been metamorphosed through the condition from the greenschist to amphibolite facies. Compared with ultramafic rocks elsewhere, it is thought that those of the Hongseong and Kwangcheon areas are derivatives of the depleted sources since they are depleted in incompatible elements including REE abundances. Moreover overall characteristics of the ultramafic rocks are similar to the those of orogenic related Alpine type ultramafic rocks, especially, shallow mantle slab varieties.

충남 홍성 및 광천 지역에는 두 초염기성암들이 선캠브리아기의 편마암 복합체내에서 격리된 암체로서 산출된다. 이 암체들은 북북동 방향으로 수백 미터 신장되었고, 인접한 변성퇴적암류와 거의 수직 단층관계로 접해 있다. 이 암석들은 듀나이트 및 하즈버자이트로 등립상-모자이크 조직 및 원생입상 조직을 보이고, 드물게 잔쇄반상조직을 보이기도 한다. 이 암석들은 다양한 양의 높은 포스테라이트 조성의 감람석, 마그네슘비의 사방휘석과, 트래모라이트에서 마그네시안 조성의 각섬석, 부 구성광물로 첨정석, 사문석, 녹리석, 자철석, 금운모, 활석 등을 포함하는데 이는 주변암인 편마암 복합체 및 변성 염기성암(각섬석, 흑운모, 사장석, 알칼리 장석, 석영)과 구분이 된다. 화학적으로 이들 초염기성암은 높은 마그네슘비 및 전이 원소 함량, 낮은 알칼리원소 함량, 결핍된 비호정 원소 함량을 보인다. 상관계수에서 높은 정의관계가 함철 원소 쌍, 비호정 원소 쌍, 함철원소와 SiO$_2$ 또는 $Al_2$O$_3$ 원소 사이에서 나타났고 부의 상관관계가 Ni 및 주 원소 사이에서 나타났다. 이들 결과들은 변질의 증가에 따른 함 철 및 $Al_2$O$_3$광물의 증가와 함마그네슘 광물의 감소를 의미한다. 계산된 지질온도계와 광물 조합은 초염기성암이 녹색편암상에서 각섬암상 범위 조건에서 변성 받았음을 암시한다. 전 세계 유사암체와 비교해, 홍성 및 광천 초염기성암들은 희토류를 포함한 비호정성원소에서 결핍된 특징을 보였는데 이는 이 암석이 결핍된 맨틀로부터 유래되었음을 암시한다. 이런 홍성 및 광천 지역 초염기성암의 전체적인 특징은 알파인형 초염기성암 중 특히 천부 맨틀 판 형의 경우와 유사하다.

Keywords

References

  1. 강필종, 임주환 (1974) 한국지질도 1 : 50,000 광정지질 도폭. 국립지질조사소
  2. 김규한, 박재경, 양종만, Hiroshi Satake (1993) 울산 철광산지역 사문암의 사문암화작용에 관한 연구. 광산지질. 26권, p. 267-278
  3. 김규한, 박재경, 양종만, Yoshida Naohhiro (1990) 울산 철광산의 탄산염과 사문암의 성인. 지질학회지, 26권, p. 407-417
  4. 김봉균, 이하영, 김수진, 정지곤 (1988) 한국지질도 1 : 50,000 안동지질도 및 설명서. 한국동력자원연구소
  5. 박양대, 윤형대 (1968) 한국 지질도 1 : 50,000 울산 도폭. 국립지질조사소
  6. 서만철, 우영균, 송석환, Hao Tianyao (2000) 충남 지역 초염기성 암체의 지구 물리적 연구: 탄성파 속도 특성. 한국지구과학회지, 21권, p. 349-358
  7. 송석환, 송윤섭 (2001) 충남 서부 신곡 지역에 분포하는 초염기성암의 광물 조성 및 지구화학. 자원환경지질, 34권, p. 395-415
  8. 엄상호, 이민성 (1963) 한국지질도 1: 50,000 대흥지질도 폭 및 설명서. 국립 지질조사소
  9. 우영균, 서만철 (2000) 충남지역 초염기성암체의 암석학적 연구. 지구과학회지, 21권, p. 323-336
  10. 우영균, 최석원, 박기화 (1991) 충남 예산지구 활석광산의 성인에 대한 연구. 광산지질, 24권, p. 363-378
  11. 윤성효, 고정선, 안지영 (1998) 제주도 동부 알칼리 현무암내 스피넬-레조라이트 포획체의 연구. 자원환경지질, 31권, p. 447-458
  12. 이상헌, 최기주 (1994) 대흥 활석 광상 주변의 편마암류의 지화학적 특징과 공존광물의 화학적 평형. 암석학회지, 3권, p. 138-155
  13. 이종혁, 김성수 (1963) 한국지질도 1 : 50,000 홍성지질도 폭 및 설명서. 국립지질조사소
  14. 이한영 (1995) 남한의 알카리 현무암에 분포하는 맨틀포획암의 암석화학적 연구: 상부맨틀의 온도 및 압력추정. 암석학회지, 4권, p. 104-123
  15. 지정만, 김규봉, (1977) 사문석의 활석화 과정에 관한 연구. 광산지질, 10권, p. 75-92
  16. 최수용, 황진연, 김정진, 이윤종. (1990) 울산사문암체의 광물학적ㆍ지구화학적 연구, 지질학회지, 26권, p. 105-118
  17. 황진연, 김정진, 옥수석, (1993) 안동 사문암광상의 구성광물 및 성인에 대한 연구. 광산지질, 26권, p. 267-278
  18. Abe, N., Takami, M. and Arai, S. (2003) Petrological feature of spinel lherzolite xenolith from Oki-Do Island: An implication for variety of the upper mantle peridotite beneath southwestern Japan. The Island Arc, v.12, p. 219-232
  19. Agata, T. (1988) Chrome spinels from the Oura layered igneous complex, central Japan. Lithos, v. 21, p. 350-375
  20. Arai, S., Ishimaru, S. and Okrugin, V.M. (2003) Metasomatized hazburgite xenoliths from Avache volcano as fragments of mantle wedge of the Kamchatka arc: Implication for the metasomatic agent. The Island Arc, v. 12, p. 233-246
  21. Babalonas, D., Karataglis, S. and Kabassakaaalis, V. (1984) The ecology of plant populations growing on serpentine soils. III Some plant species from the North Greece in relation to the serpentine problem. Phyton. (Austria), v. 24, p. 225-238
  22. Bailey, S.W. (1988) X-ray diffraction identification of polytypes of mica, serpentine and chlorite. Clay Miner., v. 36, p. 193-213
  23. Banerjee, P.K. (1972) Geology and geochemistry of Sukinda ultramafic field, Cuttack District, Orissa. Mem. Geol. Surv. India, v. 103, p. 11-19
  24. Beeson, M.H. and Jackson, E.D. (1969) Chemical composition of altered chromites from the Stillwater Complex, Montana. Amer. Mineral., v. 54, p. 1084-1100
  25. Berazain, I.R. (1976) Estudio preliminar de la flora serpentinicola de Cuba. Ciencias Ser. 10. Botanica, v. 12, p. 11-26
  26. Bodinier, J.L. (1988) Geochemistry and petrogenesis of the Lanzo peridotite body, western Alps. Tectonophy., v. 149, p. 67-88
  27. Bodinier, J.L., Dupuy, C. and Dostal, J. (1988) Geochemistry and petrogenesis of eastern Pyrenean peridotites. Geochem. Cosmochim. Acta., v. 52, p. 2893- 2907
  28. Brooks, R.R. (1987) Serpentine and its vegetation; A multidisciplinary approach. Dioscorides Press. Portland, 454p
  29. Brooks, R.R., Lee, J., Reeves, R.D. and Jaffre, T. (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor., v. 7, p. 49-57
  30. Casey, J.F., Karson, J.A., Elthon, D., Rosencrantz, E. and Titus, M. (1983) Reconstruction of geometry of accretion during formation of the bay of Islands ophiolite complex. Tectonophy., v. 116, p. 509-528
  31. Den, T.E. (1969) Origin of ultramafic rocks, their tectonic setting and history: A contribution to the discussion of the paper “The origin of ultramafic and ultrabasic rocks” by P. J. Wyllie. Tectonophy., v. 7, p. 457-488
  32. Dick, H.J.B. and Bullen, T. (1984) Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spartially associated lavas. Contrib. Miner. Petrol., v. 86, p. 54-76
  33. Dymek, R.F., Brothers, S.C. and Schiffries, C.M. (1988) Petrogenesis of ultramafic metamorphic rocks from 3800 Ma Isua supracrustal belt, western Greenland. J. Petrol., v. 29, p. 1353-1397
  34. Fabries, J. (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib. Miner. Petrol., v. 69, p. 329-336
  35. Frey, F. A. (1969) Rare earth abundances in a high -temperature peridotite intrusion. Geochem. Cosmochim. Acta., v. 33, p. 1429-1447
  36. Frey, F.A., Suen, C.J. and Stockman, H.W. (1985) The Ronda high temperature peridotite: Geochemistry and Petrogenesis. Geochem. Cosmochim. Acta., v. 49, p. 2469-2491
  37. Goding, H. G. and Bayliss, P. (1968) Altered chrome ores from the Coolac serpentinite belt, New South Wales, Australia. Amer. Mineral., v. 53, p. 162-183
  38. Griffin, W.L., O'Reilly S.Y. and Stabel, A. (1988) Mantle metasomatism beneath western Victoria, Australia: II. Isotopic geochemistry of Cr-diopside lherzolites and Al-augite pyroxenite. Geochim. Cosmochim. Acta, v. 52, p. 449-460
  39. Griffin, W.L., Wass, S.Y. and Hollis, J.D. (1984) Ultramafic xenoliths from Bullenmerri and Gnotuk Maars, Victoria, Australia: Petrology of sub-continental crustmantle transition. J. Petrol., v. 25, p. 53-89
  40. Hess, H.H. (1955) Serpentines, orogeny and epiorogeny. In Polervaart, A. (ed.) Crust of the Earth. Geol. Soci. Amer. Spec. Pap., no, 62, p. 391-407
  41. Hey, M.H. (1954) New review of chlorites. Miner. Mag., v. 30, p. 277-292
  42. Hoogerduijn, S.E.H., Rampone, E., Piccardo, G.B., Drury, M.R. and Vissers, R.L. (1993) Subsolidus emplacement of mantle peridotites during incipient oceanic rifting and opening of the Mesozoic Tethys (Voltri Massif, NW Italy). J. Petrol., v. 34, p. 901-927
  43. Humphries S.E. (1984) The mobility of the rare earth elements in the crust. In Henderson P(ed.) Rare earth element geochemistry. Elsevier, Amsterdam. p. 315-341
  44. Igoshina, K.N. (1966) Specificity of the flora and vegetation of ultramafic rocks in the Polar Ural (In Russ). Bot. Zuhur., v. 51, p. 322-338
  45. Irifune, T. and Ringwood, A.E. (1987) Phase transformations in a dynamical behavior of the subduction slab. Earth Planet. Sci. Lett., v. 86, p. 367-376
  46. Jackson, I. (1991) The petrological basis for the interpretation of seismological models for continental lithosphere. In Drummond, B.J. (ed.) The Eastern Australian lithosphere. Geol. Soc. Aust. Spec. Pub., v. 17, p. 81-114
  47. Jackson, I. and Arculus, R.J. (1984) Laboratory wave velocity measurements on lower crustal xenoliths from Calcutteroo, South Australia. Tectonphy., v. 101, p. 185-197
  48. Jackson, I., Rudnick, R.L., O'Reilly, S.Y. and Bezant, C. (1990) Measured and calculated elastic wave velocities for xenoliths from the lower crust and upper mantle. Tectonphy., v. 173, p. 207-210
  49. Jochum, K.P., McDonough, W.F., Palme, H. and Spettel, B. (1989) Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths. Nature, v. 340, p. 548-550
  50. Kruckberg, A.R. (1984) California serpentines; Flora, vegetation, Geology, Soils, and Management problems. Univ. Calif. Press, Berkeley
  51. Lipin, B.R. (1984) Chromite from the Blue Ridge province of North Calorina. Amer. J. Sci., v. 284, p. 507-529
  52. Loomis, T.P. (1972) Diapiric emplacemet of the Ronda high-temperature ultramafic intrusion, southern Spain. Geol. Soc. Amer. Bull., v. 83, p. 2475-2496
  53. Maaloe, S. and Steel, R. (1980) Mantle composition derived from the composition of lherzolites. Nature, v. 285, p. 321-322
  54. Malyuga, D.P. (1964) Biochemical Prospecting for Minerals. Consultants Bureau, New York
  55. McDonough, W.F. (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett., v. 101, p. 1-18
  56. Meen, J.K. (1988) Mineral chemical variations in the Lake Chatuge Mafic-Ultrabasic Complex North Carolina-Georgia: The P-T history of rocks in the Blue Ridge. Southeastern Geology, v. 29, p. 1-27
  57. Melcher, F., Meiser, T., Puhl, J. and Koller, F. (2002) Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry.Lithos, v. 65, p. 69-112
  58. Meiser, T., Melcher, F., Tomascak, P., Dingeldey, C. and Koller, F. (1997) Re-Os isotopes in orgenic perodotite massifs in the Eastern Alps, Australia. Chemical Geology, v. 143, p. 217-229
  59. Menezes, S.E. (1969) Toxicity and movement of heavy metals in serpentine soils (North-eastern Portugal) Agron. Lusit., v. 30, p. 13-76
  60. Moores, E.M. and MacGregor, I.E. (1972) Types of alpine ultramafic rocks and their implications for fossil plate interactions. In Shagam, R. et al. (ed.) Studies in Earth and Space Sciences. Geol. Soc. Amer. Memor, no. 132, p. 209-223
  61. Nicolas, A. (1989) Structures of ophiolites and dynamics of oceanic lithosphere. Kluwer Academic, Dordrecht. p. 379
  62. O'Reilly, S.Y. and Griffin, W.L. (1988) Mantle metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites. Geochim. Cosmochim. Acta, v. 52, p. 433-447
  63. Paktung, A.D. (1984) Metamorphism of the ultramafic rocks of the Thompson mine, Thompson nickel belt, Northern Manitovia. Canad. Miner., v. 22, p. 77-91
  64. Peacock, S.M. (1987) Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones. Contrib, Miner. Petrol., v. 95, p. 55-70
  65. Pearce, J.A. (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth C.J. and Norry, M.J.(ed.) Continental basalts and mantle xenoliths. Shiva, Nantwich. p. 230-249
  66. Prinzhofer, A. and Allegre, C.J. (1985) Residual peridotites and mechanisms of partial melting. Earth and Planetary Science Letters, v. 74, p. 215-265
  67. Rampone, E.M., Hofmann, A.W., Piccardo, G.B., Vanuggi, R., Bottazzi, P. and Ottolini, L. (1995) Petrology, mineral and isotope geochemistry of the external Liguride peridotites (Northern Apennines, Italy). J. Petrol., v. 36, p. 81-105
  68. Raymond, L.A. (2002) The study of igneous, sedimentary, and metamorphic rocks. McGraw-Hill Higher Companies Inc., New York. 720p
  69. Reeves, R.D. and Brooks, R.R. (1983) Hyperaccumulation of lead and zinc by two metallophytes from a mining area of Central Europe. Environ, Pollut., v. 31, p. 277-287
  70. Rollinson, H.R. (1993) Using geochemical data. Longman Scientific & Technical, New York. 352p
  71. Roy, S. (1974) Geobotany in the exploration of nickel in the ultramafics of the Sukinda Valley, Orissa. Q. J. Geol. Min. Metall. Soc. India. v. 46, p. 251-256
  72. Rune, O. (1953) Plant life on serpentine and related rocks in the north of Sweden. Acra. Phytogeogr. Suec., v. 31, p. 1-139
  73. Schmadicke, E. and Evans, B.W. (1997) Garnet bearing ultramafic rocks from the Erzgebirge and their relation to other settings in the Bohemian Massif. Contrib. Miner. Petro., v. 127, p. 57-74
  74. Seewald, J.S. and Seyfried, W.E. (1990) The effect of temperature on metal mobility in subseafloor hydrothermal systems; constraints from basalt alteration experiments. Earth Planet. Sci. Lett. v. 101, p. 388-403
  75. Sommers, S. (1984) Serpentine flora in California-Edgewood Park. Fremontia. v. 11, p. 19-20
  76. Song, S.H., Choi, S.G. and Woo, J.G. (1997) Genetic implications of ultramafic rocks from the Bibong area in the Kyeonggi gneiss complex. Econ. Environ. Geol., v. 30, p. 477-491
  77. Song, Y. and Moon, H.S. (1991) Supergene chloritization and vermiculitization in hornblende gneiss, the Cheongyang area. J. Korean Inst. Mining Geol., v. 24, p. 233-244
  78. Spell, T.L. and Norrell, G.T. (1990) The Ropes Creek assemblage: Petrology, geochemistry, and tectonic setting of an ophiolitic thrust sheet in the southern Appalachians. Amer. J. Sci., v. 290, p. 811-842
  79. Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders, A. D. and Norry, M. J. (ed.) Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ., no. 42, p. 313-345
  80. Susuki, J. (1952) Ultrabasic rocks and associated ore deposits of Hokkaido Japan. J. Fac. Sci. Hokk. Univ. Ser. IV, v. 8, p.175-210
  81. Swanson, S.E. (1981) Mineralogy and petrology of the Day Book dunite and associated rocks, western North Carolina. Southeastern Geol., v. 22, p. 53-77
  82. Tenthorey, E.A., Ryan, J.G. and Snow, E.A. (1996) Petrogenesis of sapphirine-bearing metatroctolites from the Buck Creek ultramafic body, southern Appalachians. J. Mineral. Mag., v. 14, p. 103-114
  83. Trommsdorff, V., Sanchez-Vizcaino, V.L., Gomez-Pugnaire, M.T. and Muntener, O. (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib. Miner. Petrol., v. 132, p. 139-148
  84. Varfalvy, V., Hebert, R. and Bedard, J.H. (1996) Interactions between melt and upper-mantle peridotites in the North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland, Canada: Implications for the genesis of boninitic and related magmas. Chemical Geol., v. 129, p. 71-90
  85. Wee, S.M., Choi, S.G. and So, C.G. (1994) Preliminary Study on Ultramafic Rocks from the Chungnam Province, Korea. Econ. Environ. Geol., v. 27, p. 171-180
  86. Whittaker, E.J.W. and Wicks, F.J. (1970) Chemical differences among the serpentine "polymorphys" : A discussion. Amer. Miner., v. 55, p. 1025-1047