• Title/Summary/Keyword: Maintenance Energy

Search Result 1,388, Processing Time 0.031 seconds

Life Cycle Assessment of Rural Community Buildings Using OpenLCATM DB (OpenLCATM DB를 이용한 농촌 공동체 건축물 전과정평가)

  • Kim, Yongmin;Lee, Byungjoon;Yoon, Seongsoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.97-105
    • /
    • 2021
  • Most of the rural development projects for the welfare of residents are mainly new construction and remodeling projects for community buildings such as village halls and senior citizens. However, in the case of the construction industry, it has been studied that 23% of the total carbon dioxide emissions generated in Korea are generated in the building-related sector. (GGIC, 2015) In order to reduce the emission of environmental pollutants resulting from construction of rural community buildings, there is a need to establish a system for rural buildings by predicting the environmental impact. As a result of this study, the emissions of air pollutants from buildings in rural communities were analyzed by dividing into seven stages: material production, construction, operation, maintenance, demolition, recycling, and transportation activities related to disposal. As a result, 12 kg of carbon dioxide (CO), 0.06 kg of carbon monoxide (CO), 0.02 kg of methane (CH), 0.04 kg of nitrogen oxides (NO), 0.02 kg of sulfurous acid gas (SO), and non-methane volatile organics per 1m of buildings in rural communities It was analyzed that 0.02 kg of compound (NMVOC) and 0.00011 kg of nitrous oxide (NO) were released. This study proved that environmentally friendly design is possible with a quantitative methodology for the comparison of operating energy and air pollutant emissions through the design specification change based on the statement of the rural community building. It is considered that it can function as basic data for further research by collecting major structural changes and materials of rural community buildings.

Association between vitamin D intake and bone mineral density in Koreans aged ≥ 50 years: analysis of the 2009 Korea National Health and Nutrition Examination Survey using a newly established vitamin D database

  • Yoo, Kyoung-Ok;Kim, Mi-Ja;Ly, Sun Yung
    • Nutrition Research and Practice
    • /
    • v.13 no.2
    • /
    • pp.115-125
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Vitamin D plays an important role in skeletal growth and maintenance and in the prevention of various diseases. We investigated the relationship between vitamin D intake and bone mineral density (BMD) in Korean adults aged ${\geq}50$ years using the 2009 Korea National Health and Nutrition Examination Survey data. SUBJECTS/METHODS: This study was conducted in 1,808 subjects aged ${\geq}50$ years with BMD data in Korea. Dietary vitamin D levels were assessed by the 24-hour recall method. BMD was measured using dual-energy X-ray absorptiometry. We investigated general characteristics and the association between these characteristics, vitamin D status, and BMD. RESULTS: Vitamin D intake was significantly lower in the osteoporosis group among women (P < 0.05). Among all subjects, the higher the serum 25(OH)D concentration, the higher the whole-body total BMD (WBT-BMD), femoral total hip BMD, and femoral neck BMD (P < 0.01). In the serum vitamin D-deficient group of both the total population and women, serum 25(OH)D concentration was associated with WBT-BMD (P < 0.05). Among women with a calcium intake < 537.74 mg/day, BMD of those with a vitamin D intake > $2.51{\mu}g/day$ (average intake of women) was higher than that of women with a vitamin D intake ${\leq}2.51{\mu}g/day$ (P < 0.001). CONCLUSIONS: Korean adults should increase their BMD by increasing serum 25(OH)D concentration. Furthermore, increasing vitamin D intake could improve BMD, especially in Korean women who consume less calcium than the estimated average requirement.

A Study on Green Management of Petroleum Refining and Chemical Companies Applying to Assessment Indicator of Green Management (녹색경영 평가지표를 적용한 국내·외 정유/화학기업의 녹색경영 비교 연구)

  • Paik, Jang Hyun
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.101-116
    • /
    • 2012
  • Green management is, as the response to climate changes emerges to a global issue, a concept which reduction of greenhouse gases, alternative energy development and other low-carbon green growth factors are added on the existing environmental management. Also as discussions on the performance measurement of firms' domestic and international green managements proliferate and the importance of understanding, analyzing and evaluating firms' environmental maintenance rises, variety forms of green management performance measurement indicators are being developed and practiced. However, specific implementation methodologies about green management have been lacking. Hence in this research, In order to have objective evaluations on firms' green managements through the proposed indicator, AHP(Analytic Hierarchy Process) and experts' survey on weight dependence were applied. Sustainability reports and other associated documents of ten major oil/ chemical corporations of in and out of the country were analyzed and corporations were evaluated and compared through weight differentiated indicator subsections.

Development on the Methodology of CDM Projects in the SF6 Recovery and Recycling of Electrical Equipment (전력설비에서의 SF6 회수 및 재활용 CDM 방법론 개발)

  • Pyo, Jeong-Gwan;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.143-159
    • /
    • 2011
  • Projects applying the CDM methodology AM0035 of the $SF_6$ Emission Reductions in Electrical Grids should provide direct monitoring of all the key parameters that are related to estimation of baseline and project emissions including detailed explanations of key operating conditions and procedures, and an explanation addressing uncertainty as the result of EB meeting 41. Through this study, recovery ratio during maintenance, purity of $SF_6$ before and after disposal, replacing, loss rate of $SF_6$ before and after reclamation, leakage emission from electricity consumption and fossil fuel combustion, considered conservatively the key parameter of various monitoring. Consequently, confirmed the reduction in the amount of reduction due to the baseline emission decrease, project emission increase.

A Study of Comparison between Ayurveda and Sasang Medicine based on Constitutional Theory (체질론에 근거한 사상의학과 아유르베다의 비교 연구)

  • Kwon, Gil-Ja
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.7
    • /
    • pp.166-175
    • /
    • 2019
  • The constitution of traditional medicine is distinguished from modern medicine. Sasang medicine describe the constitution which is classified as functional intensity of the lung, spleen, liver and kidney. The functional strength of each part of the human body is not the same in each constitution, and this imbalance is considered as a major factor of the disease. Ayurveda is identified the balance of the three dosha in our body is the basis of health maintenance. The reason for the illness is due to the imbalance among vata which express energy metabolism, pitta which plays a role in metabolism and digestion, and kapha which controls body temperature. The two theories which include knowing the characteristics and trends of diseases according to their constitution, the approach of treatment and the health care of daily life. They are also considered as convergent area about treatment methods in the modern society where individual characteristics and lifestyle are emphasized. The purpose of this study is to understand the concept of constitutional basis for increasing patient satisfaction and to help diversity of treatment in preventive medical area by comparing and analyzing the theory of Sasang and Ayurveda.

Development of High Voltage, High Efficiency DC-DC Power Module for Modern Shipboard Multi-Function AESA Radar Systems (함정용 다기능 AESA 레이더 시스템을 위한 고전압·고효율 DC-DC 전원모듈 개발)

  • Chong, Min-Kil;Lee, Won-Young;Kim, Sang-Keun;Kim, Su-Tae;Kwon, Simon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • For conventional AESA radars, DC-DC power modules using 300 Vdc have low efficiency, high volume, heavy weight, and high price, which have problems in modularity with T/R module groups. In this paper, to improve these problems, we propose a distributed DC-DC power module with high-voltage 800 Vdc and high-efficiency Step-down Converter. In particular, power requirements for modern and future marine weapons systems and sensors are rapidly evolving into high-energy and high-voltage power systems. The power distribution of the next generation Navy AESA radar antenna is under development with 1000 Vdc. In this paper, the proposed highvoltage, high-efficiency DC-DC power modules increase space(size), weight, power and cooling(SWaP-C) margins, reduce integration costs/risk, and reduce maintenance costs. Reduced system weight and higher reliability are achieved in navy and ground AESA systems. In addition, the proposed architecture will be easier to scale with larger shipboard radars and applicable to other platforms.

A Study on the Automation Process of BIM Library Creation of Air Handling Unit - Development of Revit API module for efficiency and uniformity of library creation - (공기조화기의 BIM 라이브러리 생성 자동화 프로세스에 관한 연구 - 라이브러리 생성의 효율성과 통일성 확보를 위한 Revit API 모듈 개발 -)

  • Kim, Han-Joo;Choi, Myung-Hwan;Kim, Jay-Jung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.75-82
    • /
    • 2018
  • BIM(Building Information Modeling) based design process can initiatively conduct a task through all phases from early design step to construction and maintenance step. Also BIM efficiently manage the building's energy by reflecting 3D design and construction life cycle. This paper proposes an efficient process to build AHU's BIM-based library. This study involves analyzing an AHU model for development of design module, and making the template model using the same 12 parts including the shapes of ducts, doors and frames. In consideration of each shape's direction and the status of existence, which are detailed shapes of parts upon making the template model, all the shapes of the AHU model can be expressed. By applying parametric modeling to the template model, a quick and precise modification and transformation can be conducted, thus the efficiency is enhanced. A user selects an AHU model from a 2D model selection program, and extracts shape information. The final AHU shape is completed through the automation work of unnecessary shape deletion by bringing the extracted shape information to the template model. This enables the user to build efficient AHU's BIM-based library, since the quick and precise modification and transformation of the template model are possibile, and all AHU model shapes can be expressed.

A Study on the Effect of Group Heating in Rural Villages Using Poplar Wood Chips on Fuel Quality, Cost, and Atmospheric Environment (포플러 목재칩을 이용한 농산촌 마을 집단난방시 연료품질, 비용, 대기환경에 미치는 영향에 관한 연구)

  • An, Byeong-Il;Ko, Kyoung-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.57-69
    • /
    • 2022
  • This study analyzes the fuel conditions and environmental effects of converting heating in rural villages that rely on fossil fuels into wood fuel. In particular, we tried to derive the most important considerations when using wooden chips as fuel in aging agricultural villages where various variables such as weather, facility characteristics, fuel quality, and maintenance capabilities work. Above all, an experiment was conducted by comparing it with oak trees to determine whether Italian poplar, a representative attribute water created to supply fuel wood in Korea, is suitable for heating fuel. Through experiments, 1) Even though the supply of poplar wood chips during 10 hours of operation was 60.74 kg less than that of hardwood chips, the production of hot water was 140 kWh higher. 2) The higher the exhaust gas temperature, the proportional (increase) oxygen concentration and inversely (decrease) PM and CO emissions. 3) Poplar has twice as much ash content as hardwood and three times more fine dust has been detected, but it meets all the standards for wood quality at the Korea Forest Science Institute. 4) Under the condition that there is a difference in water content (7.7%), hardwood cost 1.13 times more wood chips per 1 MWh than poplar, and even if the water content is corrected equally, hardwood cost 1.05 times more per 1 MWh than poplar. 5) In conclusion, it was proved that the fuel possibility, economic possibility, and environmental possibility of poplar wood chips are sufficient.

Zeolite Based Membrane for Removal of Ammonium: A Review (효소 고정화막의 응용에 대한 총설)

  • Lee, Joo Yeop;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.173-180
    • /
    • 2022
  • Presence of ammonia in drinking water is very toxic to human health. Soluble ammonia contaminates ground water due to activities such as the use of fertilizer in crop, industrial effluents and burning of fossil fuel. Even low concentration of ammonia present in water will damage aqua environment such as marine organism. Membrane technology is an important process to remove ammonia from effectively from water. Flat sheet membrane, membrane contactor and membrane distillation are some of the methods used for water purification from ammonia. Membrane contractor is an efficient process in which ammonia is removed through liquid-gas or liquid-liquid mass transfer without change of phase unlike membrane distillation. However, the cost of ammonia removal in this method is high due to maintenance of very high pH. Zeolite has excellent ion exchange ability that enhances its ability to interact with ammonia and adsorb from wastewater. Mixed matrix membranes containing zeolite enhance the efficiency of ammonia adsorption and separation from wastewater. In this review the above discussed issues are summarized in detail.

Stability Analysis of Pipe Rack Module for Underground Complex Plants Construction (복합플랜트 지하 건설을 위한 파이프랙 모듈 공법 안정 해석)

  • Kim, Sewon;Lee, Sangjun;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.113-124
    • /
    • 2021
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. In order to safely construct a large-scale plant facility in the underground space, it is necessary to increase the utilization of the limited space layout and minimize unnecessary columns. In this study, the plant modularization method(Pipe Rack Module) was reviewed to solve the problems of work constraints, assembly and demolition, process system interconnection, and maintenance that occur when plant facilities are underground. In addition, plant module analysis was performed by applying various load conditions (earthquake load, device load, earth pressure load, etc.) to improve spatial layout usability and secure structure stability. Based on the analysis results under various boundary condition, the implications regarding the minimum installation interval and module arrangement (draft) of basic modules required for the construction of an underground combined plant were derived.