• Title/Summary/Keyword: Main hydraulic system

Search Result 239, Processing Time 0.034 seconds

Study on the hydraulic cylinder flow analysis of Orifice Type (Orifice Type의 유압실린더 유동해석에 관한 연구)

  • Bae, Kang-Youl;Jeoun, Jin-Seong
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.54-59
    • /
    • 2015
  • This paper is a numerical study on the correlation of leakage by the variation of operating temperature and orifice diameter applying to hydrostatic bearing in hydraulic actuator. Compared with Brackbill and Kandlikar experimental paper to verify the validity of the numerical analysis technique of the present study, we derive the result that the results of experiments and numerical analysis to match very well. CFD analysis program were analyzed using a commercial code FLUENT V14.5. Inlet and outlet, were applied pressure conditions, the main variables of the analysis is temperature and the orifice inner diameter. The analysis results, pressure value has decreased as the oil temperature and the orifice diameter increases.

Design of High Speed Solenoid Actuator for Hydraulic Servo Valve Operation

  • Sung, Baek-Ju;Kim, Do-Sik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • Modern electric controlled valves are demanded that its solenoid actuator should be smaller size, lighter weight, lower consumption power, and higher response time. For achieving these purposes, the major design factors of solenoid actuator such as magnetic flux density, coil turn numbers, plunger size, bobbin dimension, and etc. are must be optimized. In this study, for optimal design of high speed solenoid actuator for hydraulic servo valve operation, we draw up governing equations which are composed by combination of electromagnetic theories and empirical knowledge, and deduct the values of major design factors by use of them. For more increase the operating speed, voice coil are used as main armature in manufacturing of prototype actuator. And, we have proven the propriety of the governing equations and speed increasing method by experiments using the hydraulic valve assembly adopted the prototype of solenoid actuator.

Design of the Robust Servo Control System for Steel Making Plant using Disturbance Observer Algorithm (DOB를 이용한 제철설비용 강인 서보 제어시스템 구현)

  • Kim, Dong-Sam;Heo, Yun-Je;Jeong, Wan-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.693-696
    • /
    • 2003
  • Among many servo control systems in steel making plant, AGC system in hot rolling mill is very important to get a accurate strip thickness for good quality. AGC (Auto Gauge Control) system controls the roll gap to maintain the required thickness by using the variation of roll force and the measure of output thickness. In this paper, a simulator of AGC system which unifies both hydraulic servo control system and AGC algorithm is suggested. After proving the concurrence of algorithms between the simulator and real system, main actuator system is added. Instead of usual PI system used in present system, DOB control scheme is applied and shows the effect of disturbance attenuation well.

  • PDF

Dynamic Modeling of Washing System with Elastic Motion (탄성 운동을 고려한 세탁기 시스템의 동력학 모델링)

  • 오혁진;이우식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.47-54
    • /
    • 2003
  • The rotating of rotatory unit with its structural unbalance mass and laundry is making the main vibration problem in a vertical axis washing machine. For reducing vibration problem total washing system hung on the case by its suspension system which is constitute of spring, damper and suspension bar and hydraulic balancer is attached at the upper rim of spin basket. In this paper, we make the dynamic model of washing system of its rigid body motions by 6 degree of freedoms. Hydraulic balancer is modeled by one degree of freedom like auto ball balancer. Elastic motions of washing system have found by method of analytic, experimental and FEM. And we consider first bending mode of each suspension bar and first circumferential mode of assy tub. So, the total washing system is modeled by 12 degree of freedoms. Equations of motion for total washing system have derived, and we perform the dynamic simulation tests.

  • PDF

Study on Attitude Control System of Rotary Implement Attached on Agricultural Tractor (트랙터 로타리 작업기용 자세 제어 시스템에 관한 연구)

  • Lee, J.Y.;Go, W.;Shim, J.S.;Shin, H.C.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.427-438
    • /
    • 1998
  • In Korea, rotary implements are mainly utilized in the tillage operation. The attitude control system for rolling phenominon of tractors, which in caused due to uneven ground surfaces and sinkage of tractor wheels, is one of the most important control systems in agricultural tractors. The attitude control system of a rotary implement, attached on tractors, was designed and fabricated in this study. The control system was largely composed of four main units; a setting unit, a detection unit, a controller and a hydraulic unit. The implement was controlled by control signals from a computer proportional to controlled errors, on/off action of two directional solenoide valve and lift cylinder on the right lift rod. Response characteristic experiments for the control system fabricated in this study were carried out indoors and outdoors. The results of experiments showed the response characteristics sufficient to use as the attitude control system of rotary implements for agricultural tractors.

  • PDF

A Study on the Development of an Energy Saving Unit for a Hydraulic Elevator (유압식 엘리베이터용 에너지 저감장치의 개발에 관한 연구)

  • Cho, Ihn-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2106-2112
    • /
    • 2013
  • In a traditional hydraulic elevator, elevator car is descended by down control valve, and the oil hydraulic energy must be lost during the descending stroke. In this paper, hybrid type energy saving unit for a hydraulic elevator is researched to save the hydraulic energy which is lost during the descending stroke. The energy is stored as converted electrical energy, and the saved energy is reused as the auxiliary power for the ascending stroke of elevator car or the main power of other parts. The results show that the output characteristics are stable and good and the research is successful and useful to reuse the saved energy during the descending stroke of elevator car.

A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator (유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발)

  • 윤영환;장주섭;최명진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

AN EVALUATION OF THE APERIODIC AND FLUCTUATING INSTABILITIES FOR THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN INTEGRAL REACTOR

  • Kang Han-Ok;Lee Yong-Ho;Yoon Ju-Hyeon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.343-352
    • /
    • 2006
  • Convenient analytical tools for evaluation of the aperiodic and the fluctuating instabilities of the passive residual heat removal system (PRHRS) of an integral reactor are developed and results are discussed from the viewpoint of the system design. First, a static model for the aperiodic instability using the system hydraulic loss relation and the downcomer feedwater heating equations is developed. The calculated hydraulic relation between the pressure drop and the feedwater flow rate shows that several static states can exist with various numbers of water-mode feedwater module pipes. It is shown that the most probable state can exist by basic physical reasoning, that there is no flow rate through the steam-mode feedwater module pipes. Second, a dynamic model for the fluctuating instability due to steam generation retardation in the steam generator and the dynamic interaction of two compressible volumes, that is, the steam volume of the main steam pipe lines and the gas volume of the compensating tank is formulated and the D-decomposition method is applied after linearization of the governing equations. The results show that the PRHRS becomes stabilized with a smaller volume compensating tank, a larger volume steam space and higher hydraulic resistance of the path $a_{ct}$. Increasing the operating steam pressure has a stabilizing effect. The analytical model and the results obtained from this study will be utilized for PRHRS performance improvement.

Microcomputer-Based Constant Frequency Control of Generating System Driven by Hydraulic Power -Pump Displacement Control Type - (마이크로컴퓨터에 의한 유압구동식 발전장치의 정주파수 제어)

  • 정용길;이일영;김상봉;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-63
    • /
    • 1991
  • This study suggests a new type shaft generator driven by hydraulic power suitable for small size vessels. Since the shaft generator system is very easy to be affected by disturbances such as speed variation of main engine and load variation of the generator, a robust servo control must be implemented to obtain stable electric power with constant frequency. Thus, in this study two types of controller design method-the reference following optimal control method and robust servo control method-are adopted to the controller design. In the experiment, static and dynamic characteristics of the shaft generator system according to the variation of input frequency setting, the speed variation of the pump and the load variation of the generator are investigated. From the considerations on the computer simulation results and experimental results, it is ascertained that the shaft generator system proposed in this study has good control performances.

  • PDF

Fuel Consuming Reduction by Power Steering System Optimization (동력 조향계 최적화에 의한 연비 개선)

  • Jo, Sok-Hyun;Nam, Kyung-Woo;Kwon, O-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.119-124
    • /
    • 2006
  • This paper deals with energy-saving effort in the hydraulic power steering system. Commonly, the hydraulic power steering systems are used for passenger cars and the reduction of pumping loss under non-steering condition is important to improve fuel economy. Experiments and simulations are performed simultaneously to examine the main factors to reduce the pumping loss-pressure loss and flow rate of the power steering systems. Fuel economy effect of the optimal design of power steering system is verified by vehicle test - more than 1% fuel consuming reduction is attained.