• 제목/요약/키워드: Main component

검색결과 2,137건 처리시간 0.031초

비선형 모델 예측 제어를 이용한 차동 구동 로봇의 경로 추종 (Path Tracking with Nonlinear Model Predictive Control for Differential Drive Wheeled Robot)

  • 최재완;이건희;이치범
    • 로봇학회논문지
    • /
    • 제15권3호
    • /
    • pp.277-285
    • /
    • 2020
  • A differential drive wheeled robot is a kind of mobile robot suitable for indoor navigation. Model predictive control is an optimal control technique with various advantages and can achieve excellent performance. One of the main advantages of model predictive control is that it can easily handle constraints. Therefore, it deals with realistic constraints of the mobile robot and achieves admirable performance for trajectory tracking. In addition, the intention of the robot can be properly realized by adjusting the weight of the cost function component. This control technique is applied to the local planner of the navigation component so that the mobile robot can operate in real environment. Using the Robot Operating System (ROS), which has transcendent advantages in robot development, we have ensured that the algorithm works in the simulation and real experiment.

TiO2 성분 플럭스충진와이어에 따른 S500강의 GMA 용접부 특성 (Characteristics of GMA Weld Zone on TiO2 Different Component Flux Cored Wire for S500 Grade Steel)

  • 유철;고영봉;박경채
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.335-342
    • /
    • 2015
  • Recently, the production of oil and gas at the arctic ocean and offshore has been growing. Accordingly, S500 steel with the high tensile strength and excellent toughness has been used and flux cored wire that can be welded to the S500 has been required. In this study, we carried out observation of microstructures, mechanical properties and CTOD (crack tip openning displacement) in the weld zone that GMA (gas metal arc) welded with different component of $TiO_2$ flux core wire (the main components, rutile or Ti-slag) for S500 steel. Weld zone produced with Ti-slag flux cored wire has formed a enough acicular ferrite and shown excellent impact toughness at $-40^{\circ}C$, tensile strength at room temperature and CTOD at $-20^{\circ}C$. As a result, the developed flux cored wire was suitable for S500 steel.

MEDICI 시뮬레이터를 이용한 DRAM의 Refresh 시간 개선에 관한 연구 (A Study on Refresh Time Improvement of DRAM using the MEDICI Simulator)

  • 이용희;이천희
    • 한국시뮬레이션학회논문지
    • /
    • 제9권4호
    • /
    • pp.51-58
    • /
    • 2000
  • The control of the data retention time is a main issue for realizing future high density dynamic random access memory. The novel junction process scheme in sub-micron DRAM cell with STI(Shallow Trench Isolation) has been investigated to improve the tail component in the retention time distribution which is of great importance in DRAM characteristics. In this' paper, we propose the new implantation scheme by gate-related ion beam shadowing effect and buffer-enhanced ${\Delta}Rp$ (projected standard deviation) increase using buffered N-implantation with tilt and 4X(4 times)-rotation that is designed on the basis of the local-field-enhancement model of the tail component. We report an excellent tail improvement of the retention time distribution attributed to the reduction of electric field across the cell junction due to the redistribution of N-concentration which is Intentionally caused by ion Beam Shadowing and Buffering Effect using tilt implantation with 4X-rotation. And also, we suggest the least requirements for adoption of this new implantation scheme and the method to optimize the key parameters such as tilt angle, rotation number, Rp compensation and Nd/Na ratio. We used MEDICI Simulator to confirm the junction device characteristics. And measured the refresh time using the ADVAN Probe tester.

  • PDF

K-Nearest Neighbor Associative Memory with Reconfigurable Word-Parallel Architecture

  • An, Fengwei;Mihara, Keisuke;Yamasaki, Shogo;Chen, Lei;Mattausch, Hans Jurgen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권4호
    • /
    • pp.405-414
    • /
    • 2016
  • IC-implementations provide high performance for solving the high computational cost of pattern matching but have relative low flexibility for satisfying different applications. In this paper, we report an associative memory architecture for k nearest neighbor (KNN) search, which is one of the most basic algorithms in pattern matching. The designed architecture features reconfigurable vector-component parallelism enabled by programmable switching circuits between vector components, and a dedicated majority vote circuit. In addition, the main time-consuming part of KNN is solved by a clock mapping concept based weighted frequency dividers that drastically reduce the in principle exponential increase of the worst-case search-clock number with the bit width of vector components to only a linear increase. A test chip in 180 nm CMOS technology, which has 32 rows, 8 parallel 8-bit vector-components in each row, consumes altogether in peak 61.4 mW and only 11.9 mW for nearest squared Euclidean distance search (at 45.58 MHz and 1.8 V).

초음파 주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가 (Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Frequency Analysis Spectrum Method)

  • 정민화;이상국
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.90-98
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions like high temperature and high pressure for an extended period time. Such material degradation lead to various component faliures causing serious accidents at the plant. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for their preparing creep degraded specimens have been carried out for the purpose of nondestructive evaluation for creep damage which can occur in high-temperature pipelline of fossil power plant. As a result of ultrasonic tests for crept specimens, we confirmed that the high frequency side spectra decrease and central frequency components shift to low frequency bans, and bandwiths decrease as increasing creep damage in backwall echoes.

  • PDF

초음파에 의한 발전소 고온배관재료의 크리프손상 평가 (Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Test Method)

  • 이상국;정민화
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.99-107
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions which are high temperature and high pressure for an extended period time. Such material degradation leads to various component failures causing serious accidents at the plants. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens have been carried out for the purpose of evaluation for creep damage which can occur in high-temperature pipeline of fossil power plant. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradationtests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens, we confirmed that the sound velocity decreased and the attenuation coefficient linearly increased in proportion to the increase of creep fractiin(${\phi}$c).

  • PDF

Efficiency Analysis for Major Ports in Korea and China using Boston Consulting Group and Data Envelopment Analysis Model

  • PHAM, Thi Quynh Mai;Choi, Kyoung-Hoon;Park, Gyei-Kark
    • 한국항해항만학회지
    • /
    • 제42권2호
    • /
    • pp.107-116
    • /
    • 2018
  • Planning strategies to achieve higher competitiveness of ports are becoming increasingly important in business environment. Therefore, strategic competitive position and efficiency analysis needs to be performed to increase ports' effectiveness and competitiveness. This matches with one of targets of new concept e-Navigation to increase the agility and efficiency of ports. The purpose of this study was to apply Boston Consulting Group matrix to analyze competitive positioning of major ports in Korea and China in term of several main cargo types and then use a combination of Data Envelopment Analysis and Principal Component Analysis model to calculate efficiencies. Results show that, at the moment, Chinese ports are still on the top with high position and efficiency score for the representative-Shanghai port. However, result also points out that except container type, Korean ports have chance to compete in other cargo types. Moreover, Gwangyang port is regarded as efficient. It has better position time. It is believed that Gwangyang port together with Busan port can compete with Chinese port in the near future.

직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법 (A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System)

  • 김기태;전건욱
    • 산업경영시스템학회지
    • /
    • 제33권2호
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.

$18{\beta}$-Glycyrrhetinic Acid의 항 감염성관절염효과 (Effect of $18{\beta}$-Glycyrrhetinic Acid on Septic Arthritis Caused by Candida albicans)

  • 한용문
    • 약학회지
    • /
    • 제51권6호
    • /
    • pp.476-481
    • /
    • 2007
  • A polymorphic fungus, Candida albicans, causes various forms of infections such as disseminated candidiasis and vaginitis. Recent reports indicate that the fungus is a main etiological agent for the arthritis. In search of new sources for treatment of the fungal arthritis, we examined $18{\beta}$-glycyrrhetinic acid ($18{\beta}$-GA) against C. albicans-caused septic arthritis. The compound is isolated from Glycyrrhizae Radix that is known to have various immunomodulating activities and is one of the most popular herbal medicines. For induction of animal model of a septic arthritis, mice were given an emulsion form of C. albicans cell wall mixed with Complete Freund's Adjuvant (CFA) via footpad-injection. To determine prophylactic and therapeutic effects, the component was given to the animals before or after the induction of the arthritis, respectively. Data showed that intraperitoneal administration of $18{\beta}$-GA resulted in reduction of the inflammation, indicating the component had both prophylactic and therapeutic activities. For investigation of mechanism of the $18{\beta}$-GA, inhibitory effects on NO (nitiric oxide) and on T-lymphocyte proliferation were determined. Results demonstrated that $18{\beta}$-GA suppressed NO production from LPS (lipopolysaccharide)-treated macrophages and also inhibited proliferation of Con A (concanavalin A)activated T-cells. Taken together, $18{\beta}$-GA, a pentacyclic triterpene, has anti-arthritic activity against C. albicans-caused septic arthritis, possibly by blocking NO production and T-cell suppression.

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.