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Abstract—IC-implementations provide high perfor- 
mance for solving the high computational cost of 
pattern matching but have relative low flexibility for 
satisfying different applications. In this paper, we 
report an associative memory architecture for k 
nearest neighbor (KNN) search, which is one of the 
most basic algorithms in pattern matching. The 
designed architecture features reconfigurable vector-
component parallelism enabled by programmable 
switching circuits between vector components, and a 
dedicated majority vote circuit. In addition, the main 
time-consuming part of KNN is solved by a clock 
mapping concept based weighted frequency dividers 
that drastically reduce the in principle exponential 
increase of the worst-case search-clock number with 
the bit width of vector components to only a linear 
increase. A test chip in 180 nm CMOS technology, 
which has 32 rows, 8 parallel 8-bit vector-components 
in each row, consumes altogether in peak 61.4 mW 
and only 11.9 mW for nearest squared Euclidean 
distance search (at 45.58 MHz and 1.8 V).    
 
Index Terms—Pattern matching, k nearest neighbor, 
reconfigurable vector-component parallelism, pro- 
grammable switching circuits, dedicated majority 
vote circuit, clock mapping concept    

I. INTRODUCTION 

Pattern recognition in mobile or wearable devices has 

attracted much attention for a wide range of applications. 
Accordingly, various special-purpose hardware imple- 
menttations for pattern recognition, e.g. artificial neural 
networks (ANNs) [1-6], support vector machines 
(SVMs) [7-9], and so on, have been proposed and 
significantly outperform software implementations with 
respect to recognition speed. Additionally, it has been 
proven that a hardware implementation achieves higher 
energy efficiency than a comparable sequential software 
implementation. Nearest neighbor search (NNS) is one of 
the most basic algorithms in pattern recognition to 
classify unknown samples [10].  

The high computational costs of the minimal distance 
searching with O(dn) where a d-dimensional feature 
vector is classified among n reference vectors by brute-
force search, is the main limitation of the usage of the 
NNS classifier. Usually, the distances between a test 
sample and references are often defined as the Euclidean 
distance. A K nearest neighbor (KNN with K>1) 
classifier finds the k most similar (smallest distance) 
reference samples that are assumed to be closely related 
to an unknown input sample. Then, the input-sample 
class is assigned to the most frequent class among these k 
reference samples through a majority vote. Recently, 
hardware implementations for KNN developed in [11, 
12] achieved high performance in classification speed 
since KNN has intrinsic massive vector-parallelism. In 
[11], a FPGA-based linear-array architecture was 
designed for KNN featuring Manhattan-distance metric 
and higher parallelization than achievable with a CPU or 
a GPU. The mixed digital/analog solution for k nearest-
neighbor search (without a majority-vote circuit) in [12] 
has good area efficiency. However, reliability may 
become insufficient for scaled-down technologies due to 
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analog current-mode calculation of the Euclidean 
distance. 

Apart from the speed performance, a KNN associative 
memory with high flexibility in number and 
dimensionality of reference feature vectors can also 
cover multiple applications. The reported KNN 
associative memory with reconfigurable word-parallel 
architecture features the following properties. (a) 
Mapping of the minimal squared Euclidean distance into 
a clock-based time domain for high search speed. (b) 
Control switches for match-signal connections from 
clocked search circuits to achieve reconfiguration of 
reference-vector storage and search circuitry. (c) 
Majority-voting circuit associated with the switches and 
high class-number flexibility. 

The contents of this paper are organized as follows: 
Section II describes the reconfigurable associative 
memory architecture for kNN classification. Section III 
presents the experimental results of the proposed kNN 
hardware. Finally, we conclude in Sect. IV. 

II. RECONFIGURABLE WORD-PARALLEL 

ARCHITECTURE FOR KNN 

1. K-Nearest Neighbor (KNN) Algorithm 
 
KNN was introduced by Fix and Hodges [13] and is a 

well-known classifier with Bayes error rate [14]. It has 
been widely used in pattern recognition and image 
processing applications, such as text categorization [15], 
gene classification [16], content-based image retrieval 
[17], image compression [18], and so on. 
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Given are a training set REF of n reference vectors 

REF= {ref1, ref2, …, refn} and an unknown input vector 
IN defined in a d-dimensional space. Then, the nearest 
neighbor (NN) classifier, which represents a non-
parametric statistical method, assigns IN to the class of 
its closest neighbor from the non-preprocessed REF in 
terms of a distance metric according to (1). On the other 
hand, IN is assigned by the KNN classifier to the class 

that has a majority among the k closest neighbor vectors. 
Here, the Euclidean distance (ED) in (2) was proved to 
have high efficiency in practical applications. 

The main drawback of KNN is the high computational 
cost of O(dn) in case of a brute force search (BFS). In 
general, BFS is a basic search method which computes 
all distances between IN and the n reference vectors of 
the training set REF with d dimensionality. Finally, the 
class of IN is determined by a sorting algorithm among 
the resulting k nearest neighbors. Hardware implement- 
tation is a good solution for this computational problem 
due to its intrinsic parallelizability. However, traditional 
method with conventional fully-digital circuits use 
adders and comparators and thus consume a large 
number of resources which causes a bad cost-efficiency 
relation. In this paper, a clock mapping concept [19-23] 
implements both the summation of component 
differences and the distance comparison among the 
references without using the conventional circuits, while 
still retaining the advantages of digital processing. 

 
2. Clock Mapping Concept with Weighted-value 
Counters for Minimal Distance Searching 

 
Since the root operation in (1) has no effect on the 

result for the k smallest distances but has high cost in 
hardware, the squared Euclidean distance (SED) for each 
vector component is used and calculated by shift 
operation and partial-product addition [19-23] with good 
area-efficiency by reusing the full adder for absolute-
difference calculations of IN and REFi. The distance 
units compute the squared absolute differences 
(SAD=(REFi-IN)2) of each vector component in parallel. 
Then, the SADs are partly summarized by the dimension-
extension circuits (DECs) [19] to achieve additional 
dimension flexibility. In this paper, the clock mapping 
concept transforms the DEC outputs of partly summed 
SADs directly into the clock-number domain without 
completely accumulating SED (∑SAD). The outputs 
from each DEC are for this purpose connected to a 
corresponding distance evaluation unit (DEU). Rather 
than adders and comparators, a weighted value counter 
(WVC) is applied in DEU for minimal-distance 
searching (see Fig. 1) with lower power dissipation and 
smaller chip area. Each bit of the DEU consists of a 1-bit 
frequency divider (FDIV) (with 21 transistors [24]), a 
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multiplexer, a XOR gate, an AND gate, and a 
transmission gate. The straightforward clock counting 
method suffers from the computational worst-case cost 
when the distance of each component is 22N (each 
feature-vector component has N bits) as described in [20].  

The WVC concept reduces the required clock number 
by first comparing the most significant bits (MSB) of the 
DEC output avoiding the influence of the lower-value 
bits. The clock counting controlled by bit-activator [21, 
22] signal (BAS) starts from MSB and switches down to 
a lower-value bit, whenever a match signal of any row is 
asserted for the higher-value bits. Correctness of the 
search result is achieved by considering all non-matching 
higher-value bits after each inclusion of lower-value bits 
in the search. Accordingly, the clock mapping method 
with the WVC can reduce the search-clock number to a 
linear increase 2 ( 1) 1N d´ + -  with N for the squared 
Euclidean distance search in the worst case [21, 22]. 

For the example of 4-bit vector components, shown in 
Fig. 1, the FDICs in the WVC are initialized to 0 before 
each search. First, the match-detection-circuit (MDC) 
comparison between the DEC outputs and the clock 
counting status of the FDIVs is restricted to the MSBs of 
all vector components. For the example of R reference 
vectors with M vector components, the search starts from 
the first component of all R reference vectors in parallel. 
It takes at most 1 clock cycle until the MDC of the first 
component detects a MSB match so that the search can 
continue with the second component. The MSB-based 
search continues thus at most M clock cycles until at 
least one reference vector issues a match signal from the 
MDC of its last component to the bit-activator (BA) [21, 

22]. Then, the BA uses 1 clock cycle for BAS generation 
to expand clock counting to the next significant bit of all 
reference vectors in parallel, and clock counting starts 
again from the first component. The match processing, 
which takes again at most M clock cycles, is now 
considering the two most significant bits. In other words, 
the BA expands previous clock counting up to the kth 
significant bit by additional inclusion of the (k-1)th most 
significant bit, when a match signal up to the kth bit is 
received for at least one reference vector. In the case of 
M vector components, a maximum of M+1 clock cycles 
is therefore needed before clock counting can continue 
with the next lower significant bit. The minimal distance 
search is completed after the winner detection is 
expanded to the least significant bit (LSB). The 
completion match signal is issued from the DEU circuit 
of the last component of the winning reference vector to 
the BA circuit. Finally, the BA then outputs a global 
match signal for the corresponding reference vector.  
 
3. Programmable Switches for Reconfiguring Reference 
Storage and Vector Dimensionality  

 
VLSI-implementations often have high performance 

for solving the computational cost of KNN but have 
usually low flexibility for satisfying different target 
applications. A reconfigurable associative memory 
(RASM) concept is developed to reconfigure the 
reference storage and vector dimensionality with vector-
component (word) parallelism by programmable 
switches (PS). RASM is a complementary solution to the 
DEC method [14-19]. Assume that the RASM has 
elements arranged in R rows and M columns, which 
contain SRAM cells for p vector components, p vector-
distance computing units (DCUs) and one DEU. As 
shown in Fig. 2, this example can be configured into 6 
combinations (1-row, 12-d; 2-row, 6-d; 3-row, 4-d; 4-
row, 3-d; 6-row, 2-d; 12-row, 1-d) for reference-vector 
number and dimension by placing switches between the 
elements. In case of d-dimensional feature vectors, 
(R×M×p)/d vectors can be processed to find the minimal 
distance by appropriately reconfiguring the switches 
between the elements. SRAM cells are associated with the 
functional logic circuits for high efficiency. The 
configuring signal (CSi) of the multiplexing switch, 
illustrated in Fig. 3, is initialized by pre-stored information 
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Fig. 1. Example of a 4-bit DEU for minimal distance searching 
with a WVC. For each bit of the DEU a 1-bit frequency divider, 
a multiplexer, a XOR gate, a AND gate, and a transmission 
gate. 
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in the memory. The switches provide a flexibility in the 
number of reference vectors and their dimensionality. 

Each PS mainly controls the connection of the match 
signals (Matchi) for every element, OR tree, and final 
winner-signal reading as shown in Fig. 3. The shift-
winner signal (SHW) is an enable signal to transfer the 
winner reading sequentially to the next element. Once the 
search end (SE) signal is asserted, read winner 
(READW) becomes the clock signal of the D-FF for 
storing the match signal. The match signals (Matchi and 
MORi) of the neighboring elements of the current switch 
(PSi) are connected when CSi=1; in other words, these 
elements are assigned to the same reference vector (or 
row). Before the rising edge of the SEL signal, which is a 
delayed SE signal, the match signal (Matchi-1) of the 
prior element is selected by the multiplexer and then is 
latched in the D-FF.  

In case of distinguishing two different feature vector, 
the prior element of the switch is the end of one reference 
vector (row). The next element then becomes head of the 
next reference vector and the match-signal input of its 
first element’s DEU becomes the search begin (SB) 
signal, when CSi=0. Additionally, the OR gate in PSB is 
used as first level of the OR gate tree (OGT) for asserting 
the SE signal while the OGT is a part of the bit activator 
circuit [16, 17]. The D-FF plays as a part of a shift 
register once SEL is asserted. Namely, the winner stored 
in the D-FF of the first switch is read by the shift clock 
(SHCLK) after the falling edge of READW. 

In this work, the RASM is arranged in R rows and M 
columns while each column contains elements with p 

vector components. As a result, /[( ) )]R M p d´ ´  

(integer obtained by rounding off ) /( )R M p d´ ´  
reference vectors with d dimensions can be configured. 
However, for the developed architecture implementation, 
d should be chosen as a multiple of p. If less than the 
configurable reference-vector number is required, the 
DCUs of the unused elements are set to the maximum 
possible distance (i.e. are filled with 1’s). Invalidation of 
the unused elements is another possibility, but has not 
been implemented yet. 

Due to the PSs, RASM provides high flexibility in the 
reference number and the dimensionality of feature 
vectors while each PS consumes only about 60 
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Fig. 2. Overview diagram of the reconfigurable associative 
memory architecture for KNN with a 3-row, 3-column example 
for the arrangement of basic elements. Each element contains 
SRAM cells for p vector components, p DCUs and one DEU.  
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Fig. 3. Multiplexing-switch architecture for reconfiguration of 
reference vector number and dimension.  
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transistors. Furthermore, the minimal SED can be found 
with high energy efficiency due to the clock mapping 
concept. 

 
4. Majority Vote Circuit for KNN 

 
The KNN classifier assigns to the class of an unknown 

input by a majority vote with the most voted label in 
among its k closest reference vectors. A dedicated 
majority-vote circuit of Fig. 4 is developed to find the 
label with largest vote value. When a match signal is 
detected through the OR tree, the clock counting of the 
DEU is terminated. Then, the match detection circuits 
(MDC) in Fig. 4 identify the k winner rows. The D-FF in 
each MDC is initialized with 0 and compared to the 
match signal. The next signal is conducted to the next 
row if the match signal (Matchi) of the current row is 0. 
On the other hand, when Matchi is 1, the row selection 
signal (acti), which is in fact a read signal of the class 
information storage, is assert, the class information is read 
out from the class label storage (CLS) cells and the vote 
counter specified by the class information through the de-
multiplexer (DeMUX) is counting up. Simultaneously, the 
D-FF is set to 1 since its clock is enabled. In the next 
clock cycle, a next match signal is detected by the above 
described process. The voting procedure is completed 
when the counter C1 is activated k times. In other words, 
k clock cycles are required for the majority vote. 

As described in the previous section II.3, CSi inputs of 
the PSs configure head and internal nodes of reference 
vectors by binary 0 and 1, respectively (Fig. 2). The 

distributed form of the majority vote circuit (see Fig. 5) 
is embedded into RASM associated with the PSs for high 
flexibility. In case of CSi=1, the neighboring elements of 
the current switch (PSi) are nodes within a reference 
pattern and the match signal for KNN (MatchKNN in Fig. 
3) is connected to ground (i.e. logic 0) for indicating a 
reference-vector-internal KNN UNIT, which is not used 
for the present configuration. Otherwise, in case of CSi=0, 
the left element is configured as the tail of a reference 
vector and the right element becomes the head of the 
next reference vector. At the same time, the local KNN 
UNIT is activated for processing match signals from the 
tail element of the reference vector. 

Each local KNN UNIT has about 70 transistors and is 
composed of a comparator, a D-FF, five logic gates, and 
the storage cells (each is a L-bit register) for the class 
information. The remaining parts of the majority-vote 
circuit, except for the distributed local KNN units, 
namely, column decoder, DeMUX circuit, comparator 
for kth nearest neighbor detection, and all counters, are 
implemented globally. The output of each KNN unit is 
the class information to drive the DeMUX circuit and the 
corresponding vote counters. The test-chip design of the 
complete architecture was carried out as a full-custom 
design. 

III. CHIP REALIZATION AND EXPERIMENTAL 

RESULTS 

1. Architecture Implementation and Chip Fabrication 
 
The test chip of the proposed RASM architecture with 

32 rows and 8 vector components of 8-bit in each row is 
was designed and fabricated in 180 nm CMOS 
technology. Fig. 6 shows the chip photomicrograph and 
Table 1 lists the chip specifications. In particular, a DEC 
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Fig. 5. Distributed form of the majority vote circuit for its 
embedding into the RASM. 
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[19] with E=24-bit, which can extend the search 
capability to 2048-dimensional feature vectors, is also 
implemented in this work.  

On the other hand, the match-signal propagation 
mainly determines the delay of the critical path in the 
case where the currently evaluated distance bit is 
different in the 1st element and equal in all other 
elements. To be specific, the critical-path delay contains 
the propagation of the AND at the DEU input, the WVC 
of the 1st element, the AND gates in the match-signal 
path of all reference-vector elements, the multiplexers in 
the switches between these elements and the final OR-
tree for clock-counting termination. In this work, the path 
delay through the AND gates in the match-signal path of 
the DEUs, the switches plus KNN UNITs between DEUs, 
and the OR-gate tree is measured at 7.79 ns. And, the 
measured delay within the DEU until the output of the 
WVC for the currently evaluated distance bit is about 
0.59 ns. The match signal in the DEU has 0.2 ns 
increased delay per bit due to the PSs in comparison to 
the previous work in [19], while the PSs provide much 
higher flexibility and applicability for multiple 
applications. As a result, the maximum working 
frequency is about 120 MHz according to the measured 

critical-path delay.  
As explained in section II.2, the worst-case clock 

number for searching the minimal distance with the clock 
mapping method is 2 ( 1) 1N d´ + -  where each d-
dimensional reference vector has N-bit components. The 
prototype chip realizes N=8-bit component precision. For 
indicating the worst case, in the test reference pattern 
with nearest distance, only the squared absolute 
difference of the first vector component has a large value 
(1282) and for the remaining seven vector components 
the squared absolute differences are zero. Furthermore, in 
the pattern with second nearest distance, the squared 
absolute differences for the first, second, third, fourth, 
fifth and sixth vector components are 1272, 152, 52, 22, 1 
and 1, respectively, while the remaining two components 
are zero. As a result, the match signal in one DEU has to 
pass through the entire path of all MDCs and the MUXs 
of the internal PSs which leads to the critical-path delay. 
On the other hand, the best search case is that the winner 
reference has no difference to the unknown input vector 
for all components (distance is 0), which results in a 
delay of only one AND gate and one transmission gate. 

The KNN unit has a class label with 3-bit (L=3-bit, 8 
class categories can be expressed), a k of 4-bit (P=4-bit, 
so that k≤15 is possible) and consumes an area of about 
418.7 μm2 in the prototype chip. Each reference vector is 
associated with a class label which is initialized in the 
storage cells of the KNN unit. Usually, several reference 
vectors are categorized in the same class so that the 
reference number is normally larger than the class 
number (32>8). As a result, the DCU, containing 
arithmetic circuits associated with memory cells, 
consumes the largest part of 81.3% of the total area. On 
the other hand, DEU with clock counting concept spends 
only 16% area, while the KNN UNIT and the switch 
circuit take only 1.4% and 1.3% of the total area, 
respectively. In particular, the majority vote circuit with 
the distributed KNN UNIT requires just about 2% chip 
area. In other words, the clock-mapping concept has 
clearly higher area and energy efficiency than a 
conventional solution with adders and comparators 
which are used in [11] for the simple Manhattan distance, 
as illustrated in Table 2. In general, a 1-bit static-ripple-
carry full adder (SRCFA) has 28 transistors and a 1-bit 
logic comparator contains 22 transistors. For example, in 
order to summarize eight 24-bit DEC outputs and find 
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Fig. 6. Photomicrograph of the fabricated highly-flexible kNN 
classifier based on a reconfigurable word-parallel associative 
memory. 
 
Table 1. Specification of the fabricated chip in 180nm for KNN 
associative memory 

Performance items Specific  
Distance metric Euclidean distance 

Technology CMOS 180 nm 
Supply voltage 1.8 V 

Parallelism 256-word 
Total power dissipation (mW) 61.4 (45.58 MHz) 

Power for search (mW) 11.9 
Search time (average) 4.38 μs 

Core area (mm2) 3.75 
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(comparison) the nearest match as in the case of our test-
chip implementation, four 24-bit, two 25-bit, and one 26-
bit SRCFAs for each row, plus one 26-bit comparator for 
every two rows with about 0.06 mm2 are required to 
implement a full-digital solution. Meanwhile, in the 
clock mapping concept, 8 cascaded 24-bit DEUs with 
0.01 mm2 are used to implement the complete distance 
searching. It is obvious that the full-digital method uses 6 
times more area than the clock mapping concept, 
resulting in addition in an equivalently higher power 
dissipation. 

While the DCU with arithmetic circuitry consumes 
most of the area, the distance computation by DCUs, 
which requires only at most 8 clock cycles per DCU in 
the case of 8-bit words, uses more than 80% of the total 
power dissipation. The power dissipation is measured to 
be 61.4 mW (at 45.58 MHz, 1.8 V supply voltage), using 
the on-chip ring oscillator and average search 
configurations for the DCU and DEU. On the other hand, 

PSs, KNN-UNITs and MVC consume only 11.9 mW 
during KNN classification. 

 
2. Experimental Results and Comparison 

 
Regarding to applications with feature vectors of more 

than 8 dimensions, additional circuitries for partially 
loading new vector-components for processing and 
storing intermediate distance results are required in [19]. 
Furthermore, this work as a complimentary solution for 
extending the applicability and flexibility of [19] and 
outperforms it in both speed and power-delay product for 
target applications with more than 8-dimensional feature-
vectors. The implementation of PSs can overcome the 
deficiency of the storage of reference vectors. On the 
other hand, a higher parallelism requires more hardware 
resources, in particular, the implementation for adders 
and comparators. As shown in Fig. 7, due to the 
implementation of PSs and distributed KNN UNITs, the 
power consumption of this work is 2.4x higher than that 
of [19] while the energy dissipation is more than 3x 
lower than that of [19]. If the dimensionality of the target 
application becomes larger, the energy efficiency of this 
work continues to become better than that of [19]. 

As described in section III.1, arithmetic circuitry, i.e. 
DCU, with large chip-area consumption certainly uses 
also a much larger part of the power, where the area of 
the DCU is 5 times larger than that of the DEU applying 
the clock counting concept. Indeed, higher parallelism 
leads to faster processing speed but consumes also much 
more resources, as verified by e.g. the full-digital FPGA 
implementation in Table 2. However, this work can 
achieve higher search speed by massive parallelism 
without huge area and power problems due to clock-

Table 2. Performance comparison list 

 This work FPGA solution [11] Mixed A/D with current 
expression [12] Digital solution [19] 

Distance metric Euclidean Manhattan Euclidean Euclidean 
Technology  0.18 μm 1P5M 0.13 μm 0.35 μm 2P3M 0.18 μm 1P5M 
Parallelism 256 128 1024 256 

KNN Yes Yes No (k-th) No 
Power (mW) 11.9 (1.8 V@45.58MHz) 4700 @100MHz 195 (3.3 V) 5.02 (1.8 V@42.9MHz) 
Search time  8.76 μs 0.03 μs >>0.96 μs >>30 μs 

Normalized power (@100MHz) 13.5 mW 4700 mW -  12.4 mW 
Search time (@100MHz)  3.99 μs  0.03 μs >>0.96 μs >>12.9 μs 
Power-delay product (nJ)  53.9 141 >>187.2 >>160 

Area (mm2) 3.75  22 K logic cells  5.12 3.51 
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Fig. 7. Energy and power efficiency comparison with previous 
works. 
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based distance-mapping concept. Even though the 
analog/digital solution [12] has better area efficiency 
than the reported work, Si-area and transistor length in 
[12] cannot be scaled down easily since distances are 
expressed by voltage differences. Further improvement 
via an advanced low voltage CMOS technology is 
therefore not possible for the work of [12].  

V. CONCLUSIONS 

In this paper, we proposed a reconfigurable associative 
memory (RASM) concept with vector-component 
parallel architecture for k nearest neighbor (KNN) 
classification. A clock-counting solution with high 
power/area efficiency for nearest Euclidean distance 
search and a distributed circuitry for class-determination 
by majority voting are applied. Furthermore, 
programmable switches (PSs) enable configurability of 
reference-vector storage with respect to vector number 
and dimensionality, resulting in the implementation 
possibility of many different applications on the same 
integrated hardware. A prototype chip is designed and 
fabricated in 180 nm CMOS technology to demonstrate 
this flexibility and the power/area efficiency of RASM 
through experimental verification. 
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