Journal of the Korean Institute of Telematics and Electronics
/
v.24
no.5
/
pp.880-886
/
1987
This paper proposes a new pattern recognition system using Radon transform and analyzes the performances of the system for given input patterns. The proposed system uses many optical parts in order to utilize the high speed characteristics of light and processes a signal easily by transforming 2-D image into a 1-D signal to increase flexibility. The squared Mahalanobis distance obtained from means and standard deviations of the features for the given input patterns is used for discrimination. As a result, this system represents a better recognition rate than any other systems using the same input patterns.
Human emotions are expressed in various ways. It can be expressed through language, facial expression and gestures. In particular, the facial expression contains many information about human emotion. These vague human emotion appear not in single emotion, but in combination of various emotion. This paper proposes a emotional expression algorithm using Active Appearance Model(AAM) and Fuzz k- Nearest Neighbor which give facial expression in similar with vague human emotion. Applying Mahalanobis distance on the center class, determine inclusion level between center class and each class. Also following inclusion level, appear intensity of emotion. Our emotion recognition system can recognize a complex emotion using Fuzzy k-NN classifier.
사용자의 감정에 관련된 정보를 처리하는 것은 인간과 컴퓨터와의 상호작용(HCI)에 있어서 매우 중요한 역할을 한다. 특히 비디오 데이터에 대한 사용자의 감정을 처리하는 것은 비디오 검색이나 요약본 구성에 매우 중요하다. 사용자의 감정을 처리하기 위해서는 감정에 관련된 특징들을 추출 및 측정하고 이를 기반으로 비디오 장면을 분류하는 것이 필요하다. 본 논문에서는 칼라 정보를 바탕으로 Fisher의 Linear Discriminant Analysis 방식 및 Mahalanobis Distance 측정을 이용하여 기본 감정의 분류 방식을 제안한다. 공포 감정의 경우 77.8%의 의미 있는 결과를 얻었다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.520-522
/
2005
본 논문에서는 인간과 컴퓨터 사이의 상호작용을 하는 방법중의 하나인 제스처를 인식할 때 필요한 정확한 손 검출 방법을 제안한다. 이를 위해 기존의 다수의 손 영상들 가장 잘 표현하면서도 효과적으로 압축할 수 있는 PCA를 이용해서 특징 벡터를 추출한다. 이어서 특징 벡터간의 Mahalanobis distance를 이용한 분류기에 가중치를 적용하여 사용한다. 또한 시간에 따른 연속적인 영상에서 검출된 이전 영상의 중심점의 위치와 중심점의 motion vector를 이용해서 손이 검출되지 않은 영상의 검출 성능을 보상한다.
Journal of the Korea Institute of Military Science and Technology
/
v.14
no.6
/
pp.1073-1080
/
2011
In this study, a target detection algorithm was proposed for using hyperspectral imagery. The proposed algorithm is designed to have minimal processing time, low false alarm rate, and flexible threshold selection. The target detection procedure can be divided into two steps. Initially, candidates of target pixel are extracted using matching ratio of spectral pattern that can be calculated by spectral derivation. Secondly, spectral distance is computed only for those candidates using Euclidean distance. The proposed two-step method showed lower false alarm rate than the Euclidean distance detector applied over the whole image. It also showed much lower processing time as compared to the Mahalanobis distance detector.
Proceedings of the Korea Institute of Fire Science and Engineering Conference
/
1997.11a
/
pp.484-491
/
1997
In this paper, an approach to determine the in-ordinal condition of a room, which is based on multi variable analysis, is proposed. According to this approach, the distance of a state from the ordinal condition is thought to be evaluated by the Mahalanobis' distance. The temperature changes of a room were measured and their statistical characteristics such as distribution type, the mean value and the standard deviation are studied. The applicability of the method for the fire detection is also investigated.
Near-infrared (NIR) spectroscopy has been successfully utilized for the rapid identification of six typical petroleum products such as light straight-run (LSR), naphtha, kerosine, light gas oil (LGO), gasoline, and diesel. The spectral features of each product were reasonably differentiated in the NIR region, and the spectral differences provided enough qualitative spectral information for discrimination. For discrimination, principal component analysis (PCA) combined with Mahalanobis distance was used to identify each petroleum product from NIR spectra. The results showed that each product was accurately identified with an accuracy over 95%. Most noticeably, LSR, kerosine, gasoline, and diesel samples were predicted with identification accuracy of 99%. The overall results ensure that a portable NIR instrument combined with a multivariate qualitative discrimination method can be efficiently utilized for rapid and simple identification of petroleum products. This is especially important when local at-site measurements are necessary, such as accidental petroleum leakage and regulation of illegal product blending.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.239-239
/
2015
This study presents a bivariate extension of the goodness-of-fit measure for regional frequency distributions developed by Hosking and Wallis [1993] for use with the method of L-moments. Utilising the approximate joint normal distribution of the regional L-skewness and L-kurtosis, a graphical representation of the confidence region on the L-moment diagram can be constructed as an ellipsoid. Candidate distributions can then be accepted where the corresponding the oretical relationship between the L-skewness and L-kurtosis intersects the confidence region, and the chosen distribution would be the one that minimises the Mahalanobis distance measure. Based on a set of Monte Carlo simulations it is demonstrated that the new bivariate measure generally selects the true population distribution more frequently than the original method. An R-code implementation of the method is available for download free-of-charge from the GitHub code depository and will be demonstrated on a case study of annual maximum series of peak flow data from a homogeneous region in Italy.
It is important to remove fog for accurate object recognition and detection during preprocessing because images taken in foggy adverse weather suffer from poor quality of images due to scattering and absorption of light, resulting in poor performance of various vision-based applications. This paper proposes an end-to-end deep learning-based single image de-fogging method using U-Net architecture. The loss function used in the algorithm is a loss function based on Mahalanobis distance with fog features, which solves the problem of domain shifts, and demonstrates superior performance by comparing qualitative and quantitative numerical evaluations with conventional methods. We also design it to generate fog through the VGG19 loss function and use it as the next training dataset.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1121-1121
/
2001
A previous study (Berzaghi et al., 2001) evaluated the performance of 3 calibration methods, modified partial least squares (MPLS), local PLS (LOCAL) and artificial neural networks (ANN) on the prediction of the chemical composition of forages, using a large NIR database. The study used forage samples (n=25,977) from Australia, Europe (Belgium, Germany, Italy and Sweden) and North America (Canada and U.S.A) with reference values for moisture, crude protein and neutral detergent fibre content. The spectra of the samples were collected using 10 different Foss NIR Systems instruments, only some of which had been standardized to one master instrument. The aim of the present study was to evaluate the behaviour of these different calibration methods when predicting the same samples measured on different instruments. Twenty-two sealed samples of different kind of forages were measured in duplicate on seven instruments (one master and six slaves). Three sets of near infrared spectra (1100 to 2500nm) were created. The first set consisted of the spectra in their original form (unstandardized); the second set was created using a single sample standardization (Clone1); the third was created using a multiple sample procedure (Clone6). WinISI software (Infrasoft International Inc., Port Mathilda, PA, USA) was used to perform both types of standardization, Clone1 is just a photometric offset between a “master” instrument and the “slave” instrument. Clone6 modifies both the X-axis through a wavelength adjustment and the Y-axis through a simple regression wavelength by wavelength. The Clone1 procedure used one sample spectrally close to the centre of the population. The six samples used in Clone 6 were selected to cover the range of spectral variation in the sample set. The remaining fifteen samples were used to evaluate the performances of the different models. The predicted values for dry matter, protein and neutral detergent fibre from the master Instrument were considered as “reference Y values” when computing the statistics RMSEP, SEPC, R, Bias, Slope, mean GH (global Mahalanobis distance) and mean NH (neighbourhood Mahalanobis distance) for the 6 slave instruments. From the results we conclude that i) all the calibration techniques gave satisfactory results after standardization. Without standardization the predicted data from the slaves would have required slope and bias correction to produce acceptable statistics. ii) Standardization reduced the errors for all calibration methods and parameters tested, reducing not only systematic biases but also random errors. iii) Standardization removed slope effects that were significantly different from 1.0 in most of the cases. iv) Clone1 and Clone6 gave similar results except for NDF where Clone6 gave better RMSEP values than Clone1. v) GH and NH were reduced by half even with very large data sets including unstandardized spectra.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.