A simple and efficient algorithm is introduced for generalized least squares estimation under nonnegativity constraints in the components of the parameter vector. This algorithm gives the exact solution to the estimation problem within a finite number of pivot operations. Besides an illustrative example, an empirical study is conducted for investigating the performance of the proposed algorithm. This study indicates that most of problems are solved in a few iterations, and the number of iterations required for optimal solution increases linearly to the size of the problem. Finally, we will discuss the applicability of the proposed algorithm extensively to the estimation problem having a more general set of linear inequality constraints.
This paper proposes algorithm in order to classify Korean consonant phonemes same as polosives, fricatives affricates into la sounds, glottalized sounds, aspirated sounds. This three kinds of sounds are one of distinctive characters of the Korean language which don't eist in language same as English. This is thesis on classfication of 14 Korean consonants(k, t, p, s, c, k', t', p', s', c', kh, ph, ch) as a previous stage for Korean phone recognition. As feature sets for classification, LPC cepstral analysis. The eperiments are two stages. First, using short-time speech signal analysis and Mahalanobis distance, consonant segments are detected from original speech signal, then the consonants are classified by fuzzy inference. As the results of computer simulations, the classification rate of the speech data was come to 93.75%.
Electrophysiological recordings are considered a reliable method of assessing a person's alertness. Sleep medicine is asked to offer objective methods to measure daytime alertness, tiredness and sleepiness. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in recognition of alertness level. In this paper, EEG signals have been analyzed using wavelet transform as well as discrete wavelet transform and classification using statistical classifiers such as euclidean and mahalanobis distance classifiers and a promising method SVM (Support Vector Machine). As a result of simulation, the average values of accuracies for the Linear Discriminant Analysis (LDA)-Quadratic, k-Nearest Neighbors (k-NN)-Euclidean, and Linear SVM were 48%, 34.2%, and 86%, respectively. The experimental results show that SVM classification method offer the better performance for reliable classification of the EEG signal in comparison with the other classification methods.
대한원격탐사학회 2001년도 춘계 학술대회 논문집 통권 4호 Proceedings of the 2001 KSRS Spring Meeting
/
pp.62-69
/
2001
본 연구에서는 해상도가 상이한 시기별 위성영상과 GIS를 이용하여 경남 통영시 한산면 추봉도 지역의 소나무재선충(Bursaphelenchus Xylophilus) 피해지역을 탐지하고 다양한 영상처리를 통하여 이를 효율적으로 추출 할 수 있는 기법을 선정하였다. 연구결과 피해지역의 공간적 범위를 추출하기 위해서는 감독분류의 MHC(Mahalanobis Distance Classification)가 유용하였고 벌채 후의 토지피복 분류로 인한 피해지역 추출을 위해서는 MLC(Maximum Likelihood Classification)가 최적한 기법으로 나타났다. 아울러 이에 관련된 GIS를 구축하여 공간정보를 추출함으로써 피해지역의 공간적 분포특성을 규명하였는데 고도 약 120-160m, 경사 21$^{\circ}$-40$^{\circ}$ 그리고 서쪽 방향 사면에서 소나무재선충이 가장 활발하게 활동하였음이 밝혀졌다.
Communications for Statistical Applications and Methods
/
제22권1호
/
pp.55-67
/
2015
An important problem in cluster analysis is the selection of variables that define cluster structure that also eliminate noisy variables that mask cluster structure; in addition, outlier detection is a fundamental task for cluster analysis. Here we provide an automated K-means clustering process combined with variable selection and outlier identification. The Automated K-means clustering procedure consists of three processes: (i) automatically calculating the cluster number and initial cluster center whenever a new variable is added, (ii) identifying outliers for each cluster depending on used variables, (iii) selecting variables defining cluster structure in a forward manner. To select variables, we applied VS-KM (variable-selection heuristic for K-means clustering) procedure (Brusco and Cradit, 2001). To identify outliers, we used a hybrid approach combining a clustering based approach and distance based approach. Simulation results indicate that the proposed automated K-means clustering procedure is effective to select variables and identify outliers. The implemented R program can be obtained at http://www.knou.ac.kr/~sskim/SVOKmeans.r.
Fluorescence spectroscopy was used to characterize chicken carcass diseases. Spectral signatures of three different disease categories of poultry carcasses (airsacculitis, cadaver and septicemia) were obtained from fluorescence emission measurements in the wavelength range of 360 to 600 nm with 330 nm excitation. Principal Component Analysis (PCA) was used to select the most significant wavelengths for the classification of poultry carcasses. These wavelengths were analyzed for pathologic correlation of poultry diseases. Using a Soft Independent Modeling of Class Analogy (SIMCA) of principal components with a Mahalanobis distance metric, poultry carcasses were individually classified into different classes with $97.9\%$ accuracy.
Novelty detection (ND) is an effective technique that can be used to determine whether a future observation is normal or not. In the present study we propose a novelty detection algorithm that can handle a situation where the distributions of target (normal) observations are inhomogeneous. A simulation study and a real case with the TFT-LCD process demonstrated the effectiveness and usefulness of the proposed algorithm.
Spectroscopic analysis of soybean kernels were made in the wavelength range of 400 to 1100 nm to find effective discrimination factors which are required for developing an opitical soybean sorter. Soybean samples used for the test were the sound and five classes of the defective kernels such as the immature, discolored(brown and violet), damaged by insect and diseased. Effective discrimination factors to classify the soybean kernels into the sound and the defective were found to be $R_{640}$, $R_{580}$/ $R_{990}$, $R_{600}$- $R_{820}$ and ( $R_{590}$- $R_{820}$)/ $R_{990}$. with classification error of less than 4%. Mahalanobis distance was used as a criterion to select significant wavelengths involved in the discrimination factors.s.
본 논문에서는 칼라지도영상으로부터 GIS의 벡터링 과정에 사용할 벡터링 영역(도로, 해안선, 등고선 등)을 추출하는 방법에 대해 연구하였다. 입력영상으로는 트루칼라영상을 사용할 경우 추출 영역의 칼라가 비교적 균일하게 분포되지만 데이터량이 방대하여 처리에 어려움이 있어 현실적이지 못하므로 이를 양자화하여 256칼라 영상으로 변환한 후 사용할 수 있도록 하였다. 추출 단계에서는 Lab칼라공간에서 mahalanobis 거리 및 방향성 마스크를 사용하여 다양한 칼라 분포를 흡수할 수 있도록 하여 배경 영역을 배제하면서 연결성이 있는 추출결과를 얻을수 있도록 하였다. 그리고 추출된 결과를 원영상과 중첩해 보면서 기호, 문자 등의 요소로 인해 끊어진 영역이나 추출시 발생되는 피할 수 없는 잡영을 편집하여 제거할 수 있는 기능을 제공하였다. 추출된 결과는 벡터링 작업에 직접 사용 가능한 형태로 추출되도록 하였는데 실제 벡터링 작업에 다양한 추출영역을 사용해 봄으로써 이를 검증하였다.
Communications for Statistical Applications and Methods
/
제10권3호
/
pp.971-980
/
2003
The tree method can be extended to multivariate responses, such as repeated measure and longitudinal data, by modifying the split function so as to accommodate multiple responses. Recently, some decision trees for multiple responses have been constructed by Segal (1992) and Zhang (1998). Segal suggested a tree can analyze continuous longitudinal response using Mahalanobis distance for within node homogeneity measures and Zhang suggested a tree can analyze multiple binary responses using generalized entropy criterion which is proportional to maximum likelihood of joint distribution of multiple binary responses. In this paper, we will modify CART procedure and suggest a new tree-based method that can analyze multiple binary responses using similarity measures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.