• 제목/요약/키워드: Magnetic resonance images

검색결과 1,116건 처리시간 0.026초

Accuracy Analysis of Magnetic Resonance Angiography and Computed Tomography Angiography Using a Flow Experimental Model

  • Heo, Yeong-Cheol;Lee, Hae-Kag;Park, Cheol-Soo;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • 제20권1호
    • /
    • pp.40-46
    • /
    • 2015
  • This study investigated the accuracy of magnetic resonance angiography (MRA) and computed tomography angiography (CTA) in terms of reflecting the actual vascular length. Three-dimensional time of flight (3D TOF) MRA, 3D contrast-enhanced (CE) MRA, volume-rendering after CTA and maximum intensity projection were investigated using a flow model phantom with a diameter of 2.11 mm and area of $0.26cm^2$. 1.5 and 3.0 Tesla devices were used for 3D TOF MRA and 3D CE MRA. CTA was investigated using 16 and 64 channel CT scanners, and the images were transmitted and reconstructed by volume-rendering and maximum intensity projection, followed by conduit length measurement as described above. The smallest 3D TOF MRA measure was $2.51{\pm}0.12mm$ with a flow velocity of 40 cm/s using the 3.0 Tesla apparatus, and $2.57{\pm}0.07mm$ with a velocity of 71.5 cm/s using the 1.5 Tesla apparatus; both images were magnified from the actual measurement of 2.11 mm. The measurement with the 16 channel CT scanner was smaller ($3.83{\pm}0.37mm$) than the reconstructed image on maximum intensity projection. The images from CTA from examination apparatus and reconstruction technique were all larger than the actual measurement.

Assessment of Left Ventricular Function with Single Breath-Hold Magnetic Resonance Cine Imaging in Patients with Arrhythmia

  • Bak, So Hyeon;Kim, Sung Mok;Park, Sung-Ji;Kim, Min-Ji;Choe, Yeon Hyeon
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권1호
    • /
    • pp.20-27
    • /
    • 2017
  • Purpose: To evaluate quantification results of single breath-hold (SBH) magnetic resonance (MR) cine imaging compared to results of conventional multiple breath-hold (MBH) technique for left ventricular (LV) function in patients with cardiac arrhythmia. Materials and Methods: MR images of patients with arrhythmia who underwent MBH and SBH cine imaging at the same time on a 1.5T MR scanner were retrospectively reviewed. Both SBH and MBH cine imaging were performed with balanced steady state free precession. SBH scans were acquired using temporal parallel acquisition technique (TPAT). Fifty patients ($65.4{\pm}12.3years$, 72% men) were included. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), myocardial mass, and LV regional wall motion were evaluated. Results: EF, myocardial mass, and regional wall motion were not significantly different between SBH and MBH acquisition techniques (all P-values > 0.05). EDV, ESV, and SV were significant difference between the two techniques. These parameters for SBH cine imaging with TPAT tended to lower than those in MBH. EF and myocardial mass of SBH cine imaging with TPAT showed good correlation with values of MBH cine imaging in Passing-Bablok regression charts and Bland-Altman plots. However, SBH imaging required significantly shorter acquisition time than MBH cine imaging ($15{\pm}7sec$ vs. $293{\pm}104sec$, P < 0.001). Conclusion: SBH cine imaging with TPAT permits shorter acquisition time with assessment results of global and regional LV function comparable to those with MBH cine imaging in patients with arrhythmia.

임산부에서 발생한 원발성 후복막 점액낭샘암종의 자기공명영상 소견: 1예 보고 (MR Imaging of Primary Retroperitoneal Mucinous Cystadenocarcinoma in Pregnant Woman)

  • 이지선;조범상;김육;이경식;강민호;이승영;김성진;박길선
    • Investigative Magnetic Resonance Imaging
    • /
    • 제17권3호
    • /
    • pp.243-248
    • /
    • 2013
  • 원발성 후복막 점액낭샘암종은 매우 드문 질환으로 현재까지 전 세계적으로 51예가 보고 되었고 이 중 임산부에서 발생한 사례가 3예 있었다. 저자들은 31세 여성에서 임신 15주 3일에 발견된 원발성 후복막 점액낭샘암종의 자기공명영상 소견을 보고하고자 한다. 복부 자기공명영상에서 후복막강 내에 위치한 종괴는 경계가 좋은 낭종으로 불규칙하게 두꺼워진 낭벽과 내부에 중벽을 가지고 있으며, T1강조영상과 T2강조영상에서 다양한 신호강도를 보이는 부위를 포함하고 있었다. 수술을 통해 원발성 후복막 점액낭샘암종으로 진단 받았고 수술 15개월 후 양측 난소에 전이성 점액낭샘암종이 발생하여 전자궁적출술과 양측 난소난관절제술 및 대망절제술을 시행하였다.

Effect of Number of Measurement Points on Accuracy of Muscle T2 Calculations

  • Tawara, Noriyuki;Nishiyama, Atsushi
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권4호
    • /
    • pp.207-214
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the effect of the number of measurement points on the calculation of transverse relaxation time (T2) with a focus on muscle T2. Materials and Methods: This study assumed that muscle T2 was comprised of a single component. Two phantom types were measured, 1 each for long ("phantom") and short T2 ("polyvinyl alcohol gel"). Right calf muscle T2 measurements were conducted in 9 healthy male volunteers using multiple-spin-echo magnetic resonance imaging. For phantoms and muscle (medial gastrocnemius), 5 regions of interests were selected. All region of interest values were expressed as the mean ${\pm}$ standard deviation. The T2 effective signal-ratio characteristics were used as an index to evaluate the magnetic resonance image quality for the calculation of T2 from T2-weighted images. The T2 accuracy was evaluated to determine the T2 reproducibility and the goodness-of-fit from the probability Q. Results: For the phantom and polyvinyl alcohol gel, the standard deviation of the magnetic resonance image signal at each echo time was narrow and mono-exponential, which caused large variations in the muscle T2 decay curves. The T2 effective signal-ratio change varied with T2, with the greatest decreases apparent for a short T2. There were no significant differences in T2 reproducibility when > 3 measurement points were used. There were no significant differences in goodness-of-fit when > 6 measurement points were used. Although the measurement point evaluations were stable when > 3 measurement points were used, calculation of T2 using 4 measurement points had the highest accuracy according to the goodness-of-fit. Even if the number of measurement points was increased, there was little improvement in the probability Q. Conclusion: Four measurement points gave excellent reproducibility and goodness-of-fit when muscle T2 was considered mono-exponential.

Guidelines for Cardiovascular Magnetic Resonance Imaging from the Korean Society of Cardiovascular Imaging (KOSCI) - Part 2: Interpretation of Cine, Flow, and Angiography Data

  • Lee, Jae Wook;Hur, Jee Hye;Yang, Dong Hyun;Lee, Bae Young;Im, Dong Jin;Hong, Su Jin;Kim, Eun Young;Park, Eun-Ah;Jo, Yeseul;Kim, Jeong Jae;Park, Chul Hwan;Yong, Hwan Seok
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권4호
    • /
    • pp.316-327
    • /
    • 2019
  • Cardiovascular magnetic resonance imaging (CMR) is expected to be increasingly used in Korea due to technology advances and the expanded national insurance coverage of these tests. For improved patient care, it is crucial not only that CMR images are properly acquired but that they are accurately interpreted by well-trained personnel. In response to the increased demand for CMR, the Korean Society of Cardiovascular Imaging (KOSCI) has issued interpretation guidelines in conjunction with the Korean Society of Radiology (KSR). KOSCI has also created a formal Committee on CMR Guidelines to write updated practices. The members of this Committee review previously published interpretation guidelines and discuss the patterns of CMR use in Korea.

A Potential Diagnostic Pitfall in the Differentiation of Hemorrhagic and Fatty Lesions Using Short Inversion Time Inversion Recovery: a Case Report

  • Kim, Jee Hye;Kang, Woo Young;Cho, Bum Sang;Yi, Kyung Sik
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권3호
    • /
    • pp.181-184
    • /
    • 2016
  • Short inversion time inversion recovery (STIR) is widely used for spinal magnetic resonance imaging (MRI) because the pulse sequence of STIR is insensitive to magnetic field inhomogeneity and can be used to scan a large field of view. In this case report, we present a case of spinal epidural hematoma with unexpected signal decrease on a STIR image. The MRI showed an epidural mass that appeared with high signal intensity on both T1- and T2-weighted images. However, a signal decrease was encountered on the STIR image. This nonspecific decrease of signal in tissue with a short T1 relaxation time that is similar to that of fat (i.e., hemorrhage) could lead to a diagnostic pitfall; one could falsely diagnose this decrease of signal as fat instead of hemorrhage. Awareness of the nonselective signal suppression achieved with STIR pulse sequences may avert an erroneous diagnosis in image interpretation.

Characteristics of Magnetic Resonance-Based Attenuation Correction Map on Phantom Study in Positron Emission Tomography/Magnetic Resonance Imaging System

  • Hong, Cheolpyo
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.189-193
    • /
    • 2020
  • An MR-based attenuation correction (MRAC) map plays an important role in quantitative positron emission tomography (PET) image evaluation in PET/magnetic resonance imaging (MRI) systems. However, the MRAC map is affected by the magnetic field inhomogeneity of MRIs. This study aims to evaluate the characteristics of MRAC maps of physical phantoms on PET/MRI images. Phantom measurements were performed using the Siemens Biograph mMR. The modular type physical phantoms that provide assembly versatility for phantom construction were scanned in a four-channel Body Matrix coil. The MRAC map was generated using the two-point Dixon-based segmentation method for whole-body imaging. The modular phantoms were scanned in compact and non-compact assembly configurations. In addition, the phantoms were scanned repeatedly to generate MRAC maps. The acquired MRAC maps show differently assigned values for void areas. An incorrect assignment of a void area was shown on a locally compact space between phantoms. The assigned MRAC values were distorted using a wide field-of-view (FOV). The MRAC values also differed after repeated scans. However, the erroneous MRAC values appeared outside of phantom, except for a large FOV. The MRAC map of the phantom was affected by phantom configuration and the number of scans. A quantitative study using a phantom in a PET/MRI system should be performed after evaluation of the MRAC map characteristics.

성인에서 지속적인 낫형동을 동반한 자연퇴축된 위축뇌탈출증의 MR영상소견 (MR Images of Spontaneously Involuted Atretic Cephalocele Concomitant with Persistent Falcine Sinus in an Adult)

  • 조준;노홍기;문원진;김미영
    • Investigative Magnetic Resonance Imaging
    • /
    • 제10권2호
    • /
    • pp.117-120
    • /
    • 2006
  • 위축뇌탈출증(atrectic cephalocele)은 중앙의 두피하부에 있는 피부로 덮힌 병변으로서 수막과 아교세포나 중추신경계 조직의 잔유물들을 포함한다. 수직동이 없거나 잔유물로 남아있는 경우 낫형동(falcin sinus)이 다시 관류하게 되어 정맥의 배출이 가능하게 된다. 위축된 뇌탈출증 또는 지속적인 낫형동은 소아에서 주로 기술되어 왔으며, 성인에서는 매우 드문 병변이다. 저자들은 성인에서 자연퇴화된 위축뇌탈출증이 지속적인 낫형동을 동반한 매우 드문증례를 보고하고자 하며 MR영상과 MR정맥조영술은 정확한 해부학적 묘사와 진단에 유용하였다.

  • PDF

레이저 조사후 자기공명영상과 조직학적 소견의 상호일치도 (MAGNETIC RESONANCE IMAGING AND HISTOPATHOLOGIC CORRELATIONS OF FOCAL LESIONS INDUCED BY LASER)

  • 이정구;정필상;정필섭;조정석;김상준
    • 대한기관식도과학회지
    • /
    • 제2권2호
    • /
    • pp.194-199
    • /
    • 1996
  • Laser therapy is becoming an accepted procedure for tissue coagulation and ablation and is especially useful in treating tumors. The laser energy is applied to the tissue of interest through various delivery systems which are introduced percutaneously, via blood vessels, through body openings, or during surgical exposure of the tissue. One of the major obstacles to effective application of lasers has been the lack of reliable method to determine the extent of tissue involvement in real time. Several methods have been proposed for monitoring the tissue response and controlling the laser in real time during laser therapy. Among them, magnetic resonance imaging(MRI) has been introduced to monitor laser-tissue interactions because laser irradiation induces changes not only in the thermal motions of the hydrogen protons within the tissue but also in the distribution and mobility of water and lipids. The buttocks of New Zealand rabbits were treated by KTP and $CO_2$laser(power : 10 watts, exposure time:10 seconds). m images were taken at immediately after lasering, 1 week later, 2 weeks later, and at the same time, tissues were harvested for histopathologic study. We analyzed MR images and histopathologic findigs of laser-treated tissues. The MR images taken immediately after laser treatment showed 3 layer pattern and which was correlated with histopathologic changes. We suggest MRI may become a useful monitoring tools for laser-tissue interaction.

  • PDF

Magnetic resonance images of ameloblastoma

  • Kim Jae-Duk;Kim Jin-Soo
    • Imaging Science in Dentistry
    • /
    • 제35권4호
    • /
    • pp.207-213
    • /
    • 2005
  • Purpose: To classify and describe the characteristic features of MRI of some ameloblastoma variants. Materials and Methods: The MR images, CT images, and panoramic radiographs in 5 cases were retrospectively examined as follows. First, the contents of ameloblastomas were devided into two portions of either solid or cystic components on the basis of MR signal intensities. The signal intensity within the solid or cystic portions was classified as homogeneous or heterogeneous. Next, the characteristic internal feature of the lesion on T1W1 or T2WI was described. The signal intensities were classified into low, intermediate, slightly high, high, and strong high signal intensity. Results: Unicystic lesion showed homogeneous high signal intensity (SI) on T2W2 and the rim enhancement of the surrounding area including the mural nodule and the thick wall except the central portion on Gd- T1W1. Solid type revealed heterogeneous and high SI area with strong high SI area on T2W2. On Gd- T1W1, the area corresponding to the low signal spot on T1W1 and the strong high signal spot on T2W1 showed low SI. Hybrid type showed slightly enhanced capsular structures and low SI for the round bony septa and the areas connecting the mixed and cystic lesions on T2Wl and Gd-T1W1. Conclusion: MRI could easily assess the relationship between the mixed and cystic findings in ameloblastoma.

  • PDF