DOI QR코드

DOI QR Code

Accuracy Analysis of Magnetic Resonance Angiography and Computed Tomography Angiography Using a Flow Experimental Model

  • Heo, Yeong-Cheol (Department of International Radiological Science, Hallym University of Graduate Studies) ;
  • Lee, Hae-Kag (Department of Computer Engineering, Soonchunhyang University) ;
  • Park, Cheol-Soo (Department of Radiological Science, Hallym Polytechnic University) ;
  • Cho, Jae-Hwan (Department of International Radiological Science, Hallym University of Graduate Studies)
  • Received : 2015.02.03
  • Accepted : 2015.02.12
  • Published : 2015.03.31

Abstract

This study investigated the accuracy of magnetic resonance angiography (MRA) and computed tomography angiography (CTA) in terms of reflecting the actual vascular length. Three-dimensional time of flight (3D TOF) MRA, 3D contrast-enhanced (CE) MRA, volume-rendering after CTA and maximum intensity projection were investigated using a flow model phantom with a diameter of 2.11 mm and area of $0.26cm^2$. 1.5 and 3.0 Tesla devices were used for 3D TOF MRA and 3D CE MRA. CTA was investigated using 16 and 64 channel CT scanners, and the images were transmitted and reconstructed by volume-rendering and maximum intensity projection, followed by conduit length measurement as described above. The smallest 3D TOF MRA measure was $2.51{\pm}0.12mm$ with a flow velocity of 40 cm/s using the 3.0 Tesla apparatus, and $2.57{\pm}0.07mm$ with a velocity of 71.5 cm/s using the 1.5 Tesla apparatus; both images were magnified from the actual measurement of 2.11 mm. The measurement with the 16 channel CT scanner was smaller ($3.83{\pm}0.37mm$) than the reconstructed image on maximum intensity projection. The images from CTA from examination apparatus and reconstruction technique were all larger than the actual measurement.

Keywords

References

  1. H. J. Lee, O. K. Park, J. C. Gang, Y. K. Shin, S. L. Lee, and M. J. Jing, J. Korean Med. Assoc. 34, 758 (1991).
  2. Lee, B. H. Neurointervention 2, 30 (2007).
  3. H. Y. Chen, J. Hermiller, A. K. Sinha, M. Sturek, L. Zhu, and G. S. Kassab, J. Appl. Physiol. 106, 1686 (2009). https://doi.org/10.1152/japplphysiol.91519.2008
  4. D. H. Seo, H. S. Gang, D. W. Kim, S. K. Park, Y. Song, S. H. Shin, S. H. Yu, S. O. Kwon, J. H. Na, H. J. Bae, C. W. Oh, K. H. Yu, B. H. Yun, B. C. Lee, J. H. Heo, G. S. Hong, S. C. Hong, and I. S. Park, Kor. J. Cerebrovascular Surgery 13, 279 (2011).
  5. H. J. Jeon, H. J. Lee, K. M. Kim, Y. S. Kim, Y. Ko, and S. J. Oh, J. Korean Neurosurg. Soc. 33, 345 (2003).
  6. M. Matsumoto, M. Sato, M. Nakano, Y. Endo, Y. Watanabe, and T. Sasaki, J. Neurosurg. 94, 718 (2001). https://doi.org/10.3171/jns.2001.94.5.0718
  7. K. K. Kim, C. H. Choi, S. W. Lee, S. W. Cha, and K. S. Song, Kor. J. Cerebrovascular Surgery. 7, 12 (2005).
  8. J. H. Lee, T. S. Jung, K. Y. Lee, and S. H. Seo, J. Korean Soc. Magn. Reson. Med. 15, 234 (2011). https://doi.org/10.13104/jksmrm.2011.15.3.234
  9. M. Cirillo, F. Scomazzoni, L. Cirillo, M. Cadioli, F. Simionato, A. Iadanza, M. Kirchin, and C. Righi, Anzalone N. Eur. J. Radiol. 82, 853 (2013). https://doi.org/10.1016/j.ejrad.2013.08.052
  10. P. J. Nederkoorn, Y. van der Graaf, B. C. Eikelboom, A. van der Lugt, L. W. Bartels, and W. P. Mali, AJNR Am. J. Neuroradiol. 23, 1779 (2002).
  11. S. Beslic, Radiol. Oncol. 38, 5 (2004).
  12. C. Levy, J. P. Laissy, V. Raveau, P. Amarenco, V. Servois, M. G. Bousser, and J. M. Tubiana, Radiology 190, 97 (1994). https://doi.org/10.1148/radiology.190.1.8259436
  13. Y. Korogi, M. Takahashi, N. Mabuchi, H. Miki, S. Fujiwara, Y. Horikawa, T. Nakagawa, T. O'Uchi, T. Watabe, and H. Shiga, Radiology 193, 181 (1994). https://doi.org/10.1148/radiology.193.1.8090889
  14. C. G. Choi, M. H. Han, J. H. Park, and K. H. Jang, J. Korean Soc. Radiol. 36, 729 (1997).
  15. S. H. Shin and D. S. Hwang, JKSMRM 16, 67 (2012).
  16. C. Jackowski, E. Aghayev, M. Sonnenschein, R. Dirnhofer, and M. J. Thali, International Journal of Legal Medicine 120, 165 (2006). https://doi.org/10.1007/s00414-005-0050-1
  17. E. K. Fishman, D. R. Ney, D. G. Heath, F. M. Corl, K. M. Horton, and P. T. Johnson, Radiographics 26, 905 (2006). https://doi.org/10.1148/rg.263055186
  18. J. Lee, T. S. Chung, K. Y. Lee, and S. H. Suh, J. Korean Soc. Magn. Reson. Med. 15, 234 (2011). https://doi.org/10.13104/jksmrm.2011.15.3.234
  19. Y. G. Kim, MRI in Practice, Academia, Seoul, 2013.
  20. H. S. Yong, J. Korean Med. Assoc. 50, 25 (2007). https://doi.org/10.5124/jkma.2007.50.1.25
  21. U. J. Schoepf and P. Costello, Radiology 230, 329 (2004). https://doi.org/10.1148/radiol.2302021489
  22. K. A. Addis, K. D. Hopper, T. A. Iyriboz, Y. Liu, S. W. Wise, C. J. Kasales, J. S. Blebea, and D. T. Mauger, AJR Am. J. Roentgenol. 177, 1171 (2001). https://doi.org/10.2214/ajr.177.5.1771171

Cited by

  1. Tc on Changes of Computed Tomography Number vol.20, pp.3, 2015, https://doi.org/10.4283/JMAG.2015.20.3.302
  2. Differential Absorption Analysis of Nonmagnetic Material in the Phantom using Dual CT vol.21, pp.2, 2016, https://doi.org/10.4283/JMAG.2016.21.2.286
  3. Analysis on Setup Variation According to Megavoltage Computed Tomography System vol.21, pp.3, 2016, https://doi.org/10.4283/JMAG.2016.21.3.425