• Title/Summary/Keyword: Magnetic particle testing

Search Result 20, Processing Time 0.031 seconds

A Study On the Magnetic Particle Testing Method for Coated Welding points (코팅처리 용접부의 자기탐상시험방법에 대한 연구)

  • Choi, Jeong Soo;Kim, Jong Hee
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.1
    • /
    • pp.102-136
    • /
    • 2008
  • Coated welding points are eliminated for Open-Inspection of above-ground storage tanks which should be inspected periodically in accordance with the Hazmat-treatment Safety Act. But it was speculated on this study that it causes such huge economical losses in terms of manpower and materials that applicable to magnetic particle testing. As a result, it was concluded that the magnetic particle testing is applicable to the coating depth below $50{\mu}m$.

  • PDF

An Application of a Magnetic Camera for an NDT System for Aging Aircraft

  • Kim, Jung-Min;Jun, Jong-Woo;Lee, Jae-Sun;Lee, Jin-Yi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.212-224
    • /
    • 2010
  • The usefulness of the magnetic camera for non-destructive testing of aging aircraft is discussed in this paper. The magnetic camera can be used f magnetic particle testing(MT), magnetic flux leakage testing(MFLT), eddy current testing(ECT) and penetration testing(PT). It measures the distribution of a magnetic field and visualizes the magnetic pattern. Near and far side cracks, fatigue, thickness degradation, and cracks under rivets have been detected. The possibility of quantitative evaluation was also examined. Using indirect experiments, we verified the detection ability of the sensor for cracks in titanium and advanced composite materials.

Dry Magnetic Particle Inspection of Ingot Cast Billets (강편 빌레트의 건식 자분 탐상)

  • Kim, Goo-Hwa;Lim, Zhong-Soo;Lee, Eui-Wan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.162-173
    • /
    • 1996
  • Dry magnetic particle inspection(MPI) was performed to detect the surface defects of steel ingot cast billets. Magnetic properties of several materials were characterized by the measurement of the B-H hysteresis curve. The inspection results were evaluated in terms of the magnetizing current, temperature, and the amount of magnetic particles applied to billets. Magnetic flux leakage near the defect site of interest was measured and compared with the results of calculation by the finite element method in the case of direct magnetizing current. Direct and alternating magnetizing currents for materials were deduced by the comparison of the inspections. Results of the magnetic particle inspection by direct magnetizing current were compared with those of finite element method calculations, which were verified by measuring magnetic leakage flux above the surface and the surface defects of the material. For square rods, due to the geometrical effect, the magnetic flux density at the edges along the length of the rods was about 30% of that at the center of rod face for a sufficiently large direct magnetizing current, while it was about 70% for an alternating magnetizing current. Thus, an alternating magnetizing current generates rather uniform magnetic flux density over the rods, except for the region on the face across about 10 mm from the edge. The attraction of the magnetic particle by the magnetic leakage field was nearly independent of the surface temperature of the billets up to $150^{\circ}C$. However, the temperature should have been limited below $60^{\circ}C$ for an effective fixing of gathered magnetic particles to the billet surface using methylene chloride. We also found that the amount of applied magnetic particles tremendously affected the detection capability.

  • PDF

On study the diagnosis of carbody structure for EMU (도시철도차량 구조체의 정밀진단에 관한 고찰)

  • Chung Jong-Duk;Yun Sung-Cheol;Hong Sun-Ho;Chun Han-Jun
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.706-711
    • /
    • 2003
  • This paper describes EDM testing, Magnetic particle testing and Ultrasonic testing results of carbody structure for EMU. Carbodys are subject to vibration, impact and wear which can cause severe defects leading to a fatal accident. The purpose of the test is to prove the endurance of Korean EMU for the commercial operation.

  • PDF

Filtration Characteristics of Magnetic Fibrous Polymeric Filter Elements for Industrial Lub-systems (산업용 자성폴리머 필터소재의 여과특성 연구)

  • 안병길;최웅수;이용훈;정용진;권오관
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.39-47
    • /
    • 1996
  • The magnetic fibrous polymeric oil filter elements for industrial lub-systems were obtained by pneumoextrusion processing prepared from thermoplastic pqlymer (polyamide) containing a magnetic particulate filler (Ba ferrite), and treated subsequently in a magnetic fields. Using the standard laboratory oil filtration test rig, metallic particle quantifier and image analyser system, the dependence of filtration charateristics of the magnetic filter media on the parameters of porosity and magnetic properties was investigated. The pressure drops and efficiencies of lubricating filter elements were measured on the packing density and magnetised filler content of filter element. Also, the industrial lub-systems such as lubricant filters for gear test rig and electric discharge processing machine were used for testing the flitrational characteristics of tl, c magnetised filter elements. The magnetic fibrous polymeric filter material was shown to possess a highly filtration efficiency in filtering the fine ferrous particles with increasing the magnetic force of filter element. Therefore, it is expected that the magnetic fibrous polymeric filter material should be used for effective oil filrers on the industrial lub-systems.

Influence Factor on Magnetization Property of Carbonyl Iron-based Magnetorheological Fluids

  • Wang, Daoming;Zi, Bin;Qian, Sen;Qian, Jun;Zeng, Yishan
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.622-628
    • /
    • 2016
  • Magnetization property is a critical factor for magnetorheological fluids (MRFs) to achieve the liquid-solid transition. The main focus of this study is on exploring the influence factors on magnetization properties of MRFs. In this paper, a theoretical analysis is performed to discuss the magnetization characteristics of MRFs firstly. Then, a method for the preparation of carbonyl iron-based MRFs is illustrated and five MRFs samples with various material parameters are prepared. It is succeeded by a series of experiments on testing the hysteresis loop and the magnetization curve of each sample and the influence factors are compared and analyzed. Experimental results indicate that there is basically no hysteresis phenomenon on MRFs which exhibits superparamagnetic behavior at room temperature. A surfactant coating on magnetic particles can slightly improve the MRFs magnetization. Additionally, the magnetic susceptibility and the saturation magnetization both increase with the particle concentration, whereas the influence of particle diameter is relatively very small. Moreover, as the temperature increases, the magnetization decreases and the declining rate accelerates gradually.

Evaluation of Mechanical Test Characteristics of Fillet Welding (필릿 용접의 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun;Rhim, Jong-Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.535-541
    • /
    • 2020
  • FCAW is used mainly in the welding of carbon steel and alloy steel because it can be welded in all positions and can obtain excellent quality at sites with variable working conditions. Recently, many studies in Korea have estimated the fatigue strength, residual stress, and deformation, and to develop a fillet welding process. On the other hand, there have been few studies of the mechanical properties based on the strength, macro and magnetic particle test results for fillet welding. This study shows the following results through fillet welding, macro testing and strength testing using SM490A (solid-structure rolled steel) for thick plates using SS400 (rolled steel) for the upper plate and FCAW. The hardness test, macro test and magnetic particle test were then conducted. The hardness tests showed that all result values were smaller than the KS B 0893 standard values of 350Hv. The macro-test showed that each type of welded part was in a normal organic state and that there were no internal errors, bubbles, or impurities on the front of the welded part. Therefore, there were no concerns about lamination. The magnetic particle examination showed no problems.

The Evaluation of Mechanical Property of WC-8%Co Alloys by Coercive Force and Magnetic Saturation (항자력과 자기포화도에 의한 WC-8%Co 초경합금의 기계적 성질 평가)

  • Ahn, Dong-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.438-444
    • /
    • 2000
  • The prediction of mechanical properties for WC-Co alloys by evaluation of coercive force and magnetic saturation were studied in relation to their microstructure. The WC-8%Co alloys were prepared using different WC particle size, carbon content and various sintering temperature by PM process. The magnetic properties such as coercive force and magnetic saturation of sintered WC-Co alloys were critically dependent upon their final composition and microstructure. Slight changes of carbon contents and small variation of WC grain size result in marked changes of magnetic properties, hardness and transverse rupture strength of sintered WC-Co alloys. It was found that the coercive force and hardness were increased by fine WC grain size of sinterd alloys, and the coercive force was proportional to hardness. With decreasing total carbon content below the stoichiometric value in WC-8%Co alloys the volume fraction of $\eta$ phase increased steadily, while the magnetic saturation and transverse rupture strength decreased. The magnetic saturation was inversely proportional to the coercive force of WC-Co alloys.

  • PDF

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan;Zhu, Zanzan;Wang, Jianlong;Zhou, H. Susan
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2013
  • Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

Analysis of Vulnerable Parts based on Non-destructive Testing Data of Tower Crane Welding Parts (타워크레인의 용접부 비파괴검사 데이터 기반 취약부위 분석)

  • Jeong, SeongMo;Lim, Jae-Yong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.50-56
    • /
    • 2021
  • The purpose of this study is to investigate vulnerable parts of tower crane structures by analyzing extensive non-destructive test data. Approximately ten percent of domestically registered tower cranes were inspected by using magnetic particle inspection. The testing was carried out as advised in KS B 0213. The non-destructive results was analyzed with respect to jib types, age and crane size. As a result, the number of crack occurrences were the largest in mast parts, followed by main jib part. Moreover, it was found that turntables were important parts deserved to be noticed at the perspective of safe maintenance.