• Title/Summary/Keyword: Magnetic mechanical forces

Search Result 124, Processing Time 0.026 seconds

Flexible Docking Mechanism with Error-Compensation Capability for Auto Recharging System of Mobile Robot

  • Roh, Se-Gon;Park, Jae-Hoon;Lee, Young-Hoon;Song, Young-Kouk;Yang, Kwang-Woong;Choi, Moo-Sung;Kim, Hong-Seok;Lee, Ho-Gil;Choi, Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.731-739
    • /
    • 2008
  • The docking and recharging system for a mobile robot must guarantee the ability to perform its tasks continuously without human intervention. This paper proposes two docking mechanisms with localization error-compensation capability for an auto recharging system. The mechanisms use friction forces or magnetic forces between the docking parts of the robot and those of the docking station. It is a structure to improve the allowance ranges of lateral and directional docking offsets, in which the robot is able to dock into the docking station. In this paper, auto-recharging system and the features of the proposed mechanisms are verified with experimental results using simple homing method.

Design of Magneto-Rheological Clutch Coil Operation Unit using Electro Magnetic Field Analysis (전자기장 해석을 이용한 자기점성 유체 클러치 코일 작동부 설계)

  • Song, Jun-Han;Choi, Dook-Hwan;Chun, Chong-Keun;Kwon, Young-Chul;Lee, Tae-Haeng
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.22-28
    • /
    • 2009
  • Recently, there has been an active study about smart fluid to control the vibration, in which MR fluid is evaluated as most efficient because it can generate different bonding forces based on the intensity of the external magnetic fields. This paper attempts to find a mechanism that, under limited conditions during a clutch production that uses such dynamic characteristic, defects the maximum intensity of electromagnetism. Using the finite element analysis program, we predicted a change within the bonding force of the MR fluid occurring inside the clutch when it is subjected to an increased electric current. In addition, we analyzed the change in the magnetic intensity when the coil comprising the coil control center is switched to multiple lines from the standard single line, to find a mechanism that can maximize the effect. Based on this analysis, we developed the clutch and tested its function, hoping to widen future MR fluid's range of application.

Analysis of Coaxial Magnetic Gear with Low Gear Ratios for Application in Counter Rotating Systems

  • Shin, H.M.;Chang, J.H.
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2015
  • This paper describes the electromagnetic and mechanical characteristics of coaxial magnetic gear (CMG) with a low gear ratio. The analysis models are restricted to a CMG with a gear ratio of less than 2. The electromagnetic characteristics including transmitted torque and iron losses are presented according to the variation of the gear ratio. The pole pairs of high speed rotor are chosen as 6, 8 and 10 by considering the torque capability. As the gear ratio approaches 1, both iron losses on the ferromagnetic materials and eddy current losses on the rotor permanent magnets are increased. The radial and tangential forces on the modulating pieces are calculated using the Maxwell stress tensor. When the maximum force is exerted on the modulating pieces, the mechanical characteristics including stress and deformation are derived by structural analysis. In CMG models with a low gear ratio, the maximum radial force acting on modulating pieces is larger than that in CMG models with a high gear ratio, and the normal stress and normal deformation are increased in a CMG with a low gear ratio. Therefore, modulating pieces should be designed to withstand larger radial forces in CMG with a low gear ratio compared to CMG with a high gear ratio.

Direct Simulation of the Magnetic Interaction of Elliptic Janus Particles Suspended in a Viscous Fluid (점성유체에 분산된 타원형 야누스 입자의 자성 상호작용에 관한 직접수치해석)

  • Kim, Hei Eun;Kang, Tae Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.455-462
    • /
    • 2017
  • The magnetic interaction between elliptic Janus magnetic particles are investigated using a direct simulation method. Each particle is a one-to-one mixture of paramagnetic and nonmagnetic materials. The fluid is assumed to be incompressible Newtonian and nonmagnetic. A uniform magnetic field is applied externally in a horizontal direction. A finite-element-based fictitious domain method is employed to solve the magnetic particulate flow in the creeping flow regime. In the magnetic problem, the magnetic field in the entire domain, including the particles and the fluid, is obtained by solving the governing equation for the magnetic potential. Then, the magnetic forces acting on the particles are calculated via a Maxwell stress tensor formulation. In a single particle problem, it is found that the orientation angle at equilibrium is affected by the aspect ratio of the particle. As for the two-particle interaction, the dynamics and the final conformation of the particles are significantly influenced by the aspect ratio, the orientation, and the spatial positions of the particles. For the given positions of the particles, the fluid flow is also influenced by the orientation of each particle. The self-assembly structure of the particles is not a fixed one, but it varies with the above-mentioned factors.

Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium

  • Farid, Khurram;Taj, Muhammad
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.255-264
    • /
    • 2022
  • Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.

Identification of noise characteristics of an automobile alternator (승용차용 교류발전기의 소음 특성 규명)

  • 정진태;서상준;은희준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • Alternator noises are composed of magnetic noise, mechanical noise, and ventilation noise. These noises depend on the design of magnetic parts and fans, the machining accuracy of each element, and assembled conditions. In running alternator there are various exciting forces which can generate noises and vibrations. In order to identify the noise sources of the alternator, the characteristics of noises and vibrations are analyzed as rotating speed is increased. And the experiment for structural vibration is carried out. From results of experimental study, the noise sources are identified and their contributions to the overall noise level are investigated. Their results can lead the instruction to the noise reduction on the alternator.

Contact-less Conveyance of Conductive Plate by Controlling Permalloy Sheet for Magnetic Shield of Air-gap Magnetic Field from Magnet Wheels (마그네트 휠의 공극 자기장 차폐판 조절에 의한 도전성 평판의 비접촉 반송)

  • Jung, Kwang-Suk;Shim, Ki-Bon;Lee, Sang-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.109-116
    • /
    • 2010
  • The magnet wheel which generates on its interfacing conductive part a repulsive force and a traction torque by rotation of permanent magnets is used to manipulate the conductive plate without mechanical contact. Here, the air-gap magnetic field of the magnet wheel is shielded partially to convert the traction torque into a linear thrust force. Although a magnitude of the thrust force is constant under the fixed open region, we can change the direction of force by varying a position of the shield sheet. So, the spatial position of conductive plate is controlled by not the force magnitude from each magnet wheel but the open position of shield sheet. This paper discusses non-contact conveyance system of the conductive plate using electromagnetic forces from multiple magnet wheels.

Contact-free Linear Actuator Using Active Magnetic Bearing (능동 자기 베어링을 이용한 비접촉식 선형 구동기)

  • 이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.91-98
    • /
    • 2003
  • In the field of precision manufacturing demanding high positioning performance, the mechanical friction in positioning device deteriorates the quality of the product and increases the cost of production for positioning devices. Therefore, we propose a contract-free linear actuator using active magnetic bearing. The structure and operating principle of the proposed system are explained, and the magnetic forces are analyzed by magnetic circuit theory to design magnetic bearings and linear actuator. With the derived equation of motion, the stability is identified. Experimental results are presented to show the feasibility.

Comparison of Korteweg-Helmholtz Electromagnetic Force Density and Magnetic Charge Force Density in Magnetic Systems (자기시스템의 Korteweg-Helmholtz 전자력 밀도와 자하 전자력 밀도의 비교)

  • Lee, Se-Hui;Choe, Myeong-Jun;Park, Il-Han
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • In magnetic systems, distribution of electromagnetic force density causes mechanical deformation, which results in noise and vibration. In this paper, Korteweg-Helmholtzs energy method and equivalent magnetic charge method are employed for comparison of their resulting distributions of force density. The force density from the Korteweg-Helmholtzs method is expresses with two Maxwell stresses on the inside and the outside fo magnetic material respectively. The other is calculated using the magnetic Coulombs law. In the numerical model of an electromagnet, their numerical results are compared. The distributions by the two methods are almost the same. And their total forces are also shown to be the same to the one calculated from the conventional Maxwell stress tensor. But the magnetic charge method is easier and more efficient in numerical calculation.

  • PDF

Comparison of Vibration Characteristics in IPM and SPM BLDC Motors with Rotor Eccentricity : (1) Electro-magnetic Force Due to PM (회전자 편심을 가지는 IPM, SPM 전동기 진동 특성 비교: (1) 영구 자석에 의한 전자기력)

  • 황근배;김경태;황상문
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.454-461
    • /
    • 2001
  • Acoustic noise and vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and electromagnetic origins through the motor air-gap. When a relative misalignment of rotor in the air-gap center exists on the assemblage, it is considered to influence the motor system characteristics. In this paper, the back electro motive force(BEMF) is analyzed by Finite Element Method(FEM) and verified by experiments for the SPM and IPM type motors. For magnetic field analysis, a FEM is used to account for the magnetic saturation. Using these results, the FEM is made to determine the appropriate electromagnetic field analysis in BLDC motors with rotor eccentricity ratio. A radial magnetic imbalance force of BLDC motor with rotor eccentricity is analyzed. Results demonstrate that the imbalance force is increased according to the degree of misalignment. An IPM motor, mostly chosen to realize high-speed operation, shows a worse effect on magnetic unbalanced forces and dynamic responses compared with SPM motor due to magnetic saturation when the rotor eccentricity exists.

  • PDF