• Title/Summary/Keyword: Magnetic interactions

Search Result 215, Processing Time 0.02 seconds

Dynamics of the mobile insert helix in the domain III-IV of Aux/IAA17 probed by site-directed spin labeling and paramagnetic NMR spectroscopy

  • Han, Mookyoung;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.61-66
    • /
    • 2015
  • The plant hormone auxin is involved in all stages of plant development. Aux/IAAs are the transcriptional repressors that bind to the Auxin Response Factors (ARFs) to regulate the gene expression upon auxin release. Aux/IAA have highly conserved C-terminal domains (domains III-IV) that mediate both homotypic and heterotypic interactions between Aux/IAA and ARF family proteins. Recent studies revealed that the conserved domains III-IV share a common ${\beta}$-grasp fold that oligomerizes in a front-to-back manner. In particular, Aux/IAA contains a mobile insert helix in the domain III-IV, whereas ARFs do not. Here, we investigated the dynamics of the insert helix using paramagnetic NMR spectroscopy. The insert helix exhibited fast motions in the ps-ns time scale from $^{15}N$ relaxation data, but the amplitude of the motion is likely limited to the local neighborhood. Our result suggests that the motion of the helix may have functional implications in protein-protein interactions for transcriptional regulations.

ESR Analysis of Cupric Ion Species Exchanged into NaH-ZSM-5 Gallosilicate

  • Yu, Jong-Sung;Kim, Jeong-Yeon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • ZSM-5 gallosilicate molecular sieves was synthesized and cupric ion was ion-exchanged into the gallosilicate. The locations of Cu(ll) species in the framework and their interactions with various adsorbates were characterized by combined electron spin resonance(ESR) and electron spin echo modulation(ESEM) methods. It was found that in a fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules. This species is located in the channel intersections of two sinusoidal channels and rotates rapidly at room temperature. Evacuation removes some of these water molecules, leaving the Cu(II) coordinated to less water molecules and anchored to of oxygens in the channel wall. Dehydration produces two Cu(II) species, both of which are located in sites inaccessible to oxygen as evidenced by non-broadening of its ESR lines by oxygen. Adsorption of adsorbate molecules such as water, alcohols, ammonia, acetonitrile and ethylene on dehydrated CuNaH-ZSM-5 gallosilicate materials causes changes in the ESR spectrum of Cu(II), indicating the migration of Cu(II) into main channels to form complexes with these adsorbates there. Cu(II) forms a complex with two molecules of methanol, ethanol and propanol, respectively as evidenced by ESR parameters and ESEM data. Cu(II) also forms a square planar complex with four molecules of ammonia, based on the resolved nitrogen superhyperfine interactions and their ESEM parameters. Cu(II) forms a complex with two molecules of acetonitrile based on the ESR parameters and ESEM data. Interestingly, however, only part of Cu(II) interacts indirectly with one molecule of nonpolar ethylene based on ESR and ESEM analyses.

  • PDF

Solid-State High-Resolution 1H-NMR Study for Ammonia Borane of Hydrogen Storage Material

  • Han, J.H.;Lee, Cheol-Eui;Kim, Se-Hun;Kim, Chang-Sam;Han, Doug-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2010
  • In liquids NMR, $^{1}H$ is the most widely observed nucleus, which is not the case in solids NMR. The reason is due to the strong homo-dipolar interactions between the hydrogen atoms which mask the useful chemical shift information. Therefore we must remove the strong homo-dipolar interactions in order to get structural information, which can be investigated by the isotropic chemical shift. There are two ways of obtaining it. One is the ultra-fast MAS of ca. 70 kHz spinning speed, which has become available only recently. The other way is devising a pulse sequence which can remove the strong homo-dipolar interaction. In the latter way, MAS with a moderate spinning rate of a few kHz, is enough to remove the chemical shift anisotropy. In this report, 1D-CRAMPS and 2D MASFSLG techniques are utilized and their results will be compared. This kind of highresolution $^{1}H$ NMR for solids, should become a valuable analytical tool in the understanding and the developing of a new class of hydrogen storage materials. Here ammonium borane $-NH_{3}BH_{3}$, whose hydrogen content is high, is used as a sample.

Determination of Strongly Interacting Spin Exchange Path and Spin Lattice Model of (VO)2(H2O){O3P-(CH2)3-PO3}ㆍ2H2O on the Basis of Spin Dimer Analysis

  • Kim, Dae-Hyun;Koo, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1665-1668
    • /
    • 2010
  • The spin exchange interactions of $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$ were examined by spin dimer analysis based on extended Huckel tight binding method. The strongest spin exchange interaction occurs through the super-superexchange path $J_2$ and the second strongest spin exchange interaction occurs through the superexchange interaction path $J_1$. There are two strongly interacting spin exchange paths in $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$. Therefore, magnetic susceptibility curve of $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$ can be well reproduced by an alternating onedimensional antiferromagnetic chain model rather than an isolated spin dimer model.

Binding Interactions of TMAP to Triple- and Double Helical DNA

  • Kim, Nan-Jung;Yoo, Sang-Heon;Huh, Sung-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.175-187
    • /
    • 2006
  • Binding interactions between a positively charged porphyrin derivative TMAP(meso-tetra(p-trimethylanilinium-4-yl)porphyrin) and triple helical $(dT)_{12}{\cdot}(dA)_{12}{\cdot}(dT)_{12}$, as well as double helical $(dA)_{12}{\cdot}(dT)_{12}$ have been studied with NMR, UV and CD spectroscopy to obtain the detailed information about the binding mode and binding site. UV melting studies showed both DNA duplex and triple helix represented very similar UV absorption patterns upon binding TMAP, but the presence of third strand of triple helical $(dT)_{12}{\cdot}(dA)_{12}{\cdot}(dT)_{12}$, inhibited improvement in thermal stability in terms of melting temperature, $T_m$. In addition, the TMAP molecule is thought to bind to the major groove, according to CD and NMR data. But absence of the clear isosbestic point in UV absorption spectra represented that binding of TMAP to DNA duplex as well as DNA triplex did not show a single binding mode, rather complex binding modes.

  • PDF

Molecular interaction between SH3 domain of PACSIN2 and proline-rich motifs of Cobll1

  • Yoo, Hee-Seop;Seok, Seung-Hyeon;Kim, Ha-Neul;Kim, Ji-Hun;Seo, Min-Duk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.3
    • /
    • pp.34-39
    • /
    • 2022
  • The SH3 domain found within a variety of proteins is comprised of generally 60 residues, and participated in protein-protein interactions with proline-rich motifs. Cobll1 was identified as a distinct molecular marker associated with CML progression, and PACSIN2 was discovered a novel Cobll1 binding partner through direct interaction between a SH3 domain of PACSIN2 and three proline-rich motifs of Cobll1. To understand the structural basis of interactions between PACSIN2 and Cobll1, backbone assignments of PACSIN2 SH3 domain were performed. Furthermore, three proline-rich peptides of Cobll1 were titrated to 15N-labeled PACSIN2 SH3 domain in various ratios. Our chemical shift changes data and conserved SH3 sequence alignment will be helpful to analyze fundamental molecular basis related to the interaction between PACSIN2 and Cobll1.

Synthesis, Crystal structure, and Magnetic Properties of Dinuclear Iron(III) Complexes with Methoxo Bridges

  • Shin, Jong-Won;Han, Jeong-Hyeong;Rowthu, Sankara Rao;Kim, Bong-Gon;Min, Kil-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3617-3622
    • /
    • 2010
  • The reaction of stoichiometric amount of $FeCl_2{\cdot}4H_2O$, (2-pyridylmethyl, 3-pyridylmethyl)amine (2,3-pyma) and sodium azide/sodium thiocyanate in methanol under aerobic conditions affords the dinuclear Fe(III) complexes, [(2,3-pyma) $(N_3)_2Fe({\mu}-OCH_3)_2Fe(N_3)_2$(2,3-pyma)]${\cdot}CH_3OH$ (1) and [(2,3-pyma)$(NCS)_2Fe({\mu}-OCH_3)_2Fe(NCS)_2$(2,3-pyma)] (2) in good yield. Two bis-methoxy-bridged diiron(III) complexes are isolated and characterized. The coordination geometries around iron(III) ions in 1 and 2 are the same tetragonally distorted octahedron. The iron(III) ions are coordinated by two nitrogens of a 2,3-pyma, two nitrogens of two azide/thiocyanate ions, and two oxygens of two methoxy groups. Both compounds are isomorphous. The structures of 1 and 2 display the C-$H{\cdots}\pi$ and/or $\pi-\pi$ stacking interactions as well as hydrogen bonding interactions, respectively. Compounds 1 and 2 show significant antiferromagnetic couplings through the bridged methoxy groups between the iron(III) ions in the temperature range from 5 to 300 K ($H=-2JS_1{\cdot}S_2$, J=-19.1 and $-13.9\;cm^{-1}$ for 1 and 2).

Yeast two-hybrid assay with fluorescence reporter (형광 리포터를 활용한 효모 단백질 잡종 기법 개발)

  • Park, Seong Kyun;Seo, Su Ryeon;Hwang, Byung Joon
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.199-205
    • /
    • 2019
  • Yeast two-hybrid (Y2H) technique has been used to study protein-protein interactions, but its application particularly to a large-scale analysis of protein interaction networks, is limited by the fact that the technique is labor-intensive, based on scoring colonies on plate. Here, we develop a new reporter for the measurement of the protein-protein interactions by flow cytometry. The yeast harboring interacting proteins can also be enriched by fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting (MACS). When two interacting proteins are present in the same yeast cell, a reporter protein containing 10 tandem repeats of c-myc epitope becomes localized on the surface of the cell wall, without affecting cell growth. We successful measured the surface display of c-myc epitope upon interacting p53 with SV40 T antigen by flow cytometry. Thus, the newly developed Y2H assay based on the display of c-myc repeat on yeast cell wall could be used to the simultaneous analysis of multiple protein-protein interactions without laborious counting colonies on plate.

The Effect of Slider Surface Texture on Flyability and Lubricant Migration under Near Contact Conditions

  • Zhou, L.;Kato, K.;Vurens, G.;Talke, F.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.277-278
    • /
    • 2002
  • Magnetron and Ion beam sputtering were used to texture the air-bearing surface of magnetic recording sliders. Flying height measurements and Laser-Doppler interferometry were used to compare the 'flyability' of textured and untextured sliders. Lubricant redistribution on the disk surface caused by slider/disk interactions was investigated using scanning ellipsometry (Surface Reflectance Analyzer (SRA)). The results show that slider surface texture causes only small changes in the flying height of sliders but reduces slider in-plane and out-of-plane vibrations. Textured sliders were found to cause less lubricant depletion on the disk surface than untextured sliders.

  • PDF

Directional Radiation of Surface Plasmon Polaritons at Visible Wavelengths through a Nanohole Dimer Optical Antenna Milled in a Gold Film

  • Janipour, Mohsen;Hodjat-Kashani, Farrokh
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.799-808
    • /
    • 2014
  • The mechanism of optical interaction of two nanoholes, milled in an opaque gold film, by means of surface plasmon polariton (SPP) propagation is investigated. The interaction depends on the polarization direction of the incident light when the nanohole pair is illuminated through uniform single antenna excitations. It is shown that by illuminating one of the nanoholes, under single antenna excitation, the other nanohole can be excited indirectly via propagated SPPs from the excited nanohole. In addition, it is found that the spectrum of electromagnetic power above the surface of the metallic film at an arbitrary point along the axis of the nanohole pair presents two resonant peaks. These peaks are due to the optical interaction between nanoholes, where the short- and long-wavelength peaks can be assigned to in-phase and antiphase interactions of magnetic dipoles relative to each nanohole, respectively. The magnetic coupled dipole approximation (MCDA) method confirms the simulation results.