DOI QR코드

DOI QR Code

Molecular interaction between SH3 domain of PACSIN2 and proline-rich motifs of Cobll1

  • Yoo, Hee-Seop (Department of Molecular Science and Technology, Ajou University) ;
  • Seok, Seung-Hyeon (College of Pharmacy and Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University) ;
  • Kim, Ha-Neul (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Ji-Hun (College of Pharmacy, Chungbuk National University) ;
  • Seo, Min-Duk (Department of Molecular Science and Technology, Ajou University)
  • Received : 2022.09.13
  • Accepted : 2022.09.16
  • Published : 2022.09.20

Abstract

The SH3 domain found within a variety of proteins is comprised of generally 60 residues, and participated in protein-protein interactions with proline-rich motifs. Cobll1 was identified as a distinct molecular marker associated with CML progression, and PACSIN2 was discovered a novel Cobll1 binding partner through direct interaction between a SH3 domain of PACSIN2 and three proline-rich motifs of Cobll1. To understand the structural basis of interactions between PACSIN2 and Cobll1, backbone assignments of PACSIN2 SH3 domain were performed. Furthermore, three proline-rich peptides of Cobll1 were titrated to 15N-labeled PACSIN2 SH3 domain in various ratios. Our chemical shift changes data and conserved SH3 sequence alignment will be helpful to analyze fundamental molecular basis related to the interaction between PACSIN2 and Cobll1.

Keywords

Acknowledgement

This work was supported by grants from the Basic Science Research Program through the National Research Foundation (NRF) of Korea, funded by the Ministry of Education, Science and Technology (2020R1A2C3008889). The authors thank the high field NMR facility at the Korea Basic Science Institute

References

  1. B. Chereda and J. V. Melo, Ann. Hematol. 94, (2015)
  2. F. Stefan, T. Moshe, E. Zeev, O. Susan, K. Razelle, and M. K. Hagop, N. Engl. J. Med. 341, (1999)
  3. C. Bruno and P. Danilo, Blood 103, 11 (2004) https://doi.org/10.1182/blood.V103.1.11.11
  4. J. Elias, Am. J. Hematol. 91, 1 (2016) https://doi.org/10.1002/ajh.24144
  5. P. S. Neil, T. Chris, Y. L. Francis, C. Ping, N. Derek and L. S. Charles, Science 305, 5682 (2004)
  6. A. E. Christopher, O. Thomas, Curr. Hematol. Malig. Rep. 10, 2 (2015)
  7. J. D. Brian, G. Francois, G. O. Stephen, G. Insa and A. L. Richard et al., N. Engl. J. Med. 355, (2006)
  8. T. Nagase, K. Ishikawa, M. Suyama, R. Kikuno, M. Hirosawa, N. Miyajima, A. Tanaka, H. Kotani, N. Nomura, O. Ohara, DNA Res. 6, 1 (1999) https://doi.org/10.1093/dnares/6.1.1
  9. P. Hana, J. Pavlina, M. Archana, S. Lucie, P. Lucie, L. Antonin, P. Karla, O. Petra, R. Lenka, D. Michael, P. Sarka, P. Sarka and B. Vitezslav, Haematologica 103, 2 (2018)
  10. T. Kenichi, S. Takashi, F. Tetsuya and I. Satoshi, Proc. Natl. Acad. Sci. U.S.A. 115, 19 (2018) https://doi.org/10.1073/pnas.1705042114
  11. U. Przemyslaw, M. Damian, C. Michal, S. Krzysztof, T. Maciej, D. Violetta and P. Andrzej, Biomedicines 10, 8 (2022)
  12. S. H. Han, S. K. Kim, H. J. Kim, Y. Lee, S. Y. Choi, G. Park, D. H. Kim, A. Lee, J. Kim, J. M. Choi, Y. Kim, K. Myung, H. Kim and D. W. Kim, Leukemia 31, 7 (2017)
  13. B. Ritter, J. Modregger, M. Paulsson and M. Plomann, FEBS Lett. 454, 3, (1999)
  14. S. M. Tsveta, A. U. Ana, N. Julian, T. Marina, M. S. Miesje, J. Vera, H. Annett, G. G. Anouk, T. Merel, G. Mariona, P. Markus and H. Stephan, Nat. Commun. 12, 2610 (2021) https://doi.org/10.1038/s41467-021-22873-y
  15. K. B. Park, H. S. Yoo, C. K. Oh, J. R. Lee, H. J. Chung, H. N. Kim, S. H. Kim, K. M. Kee, T. Y. Kim, M. S. Kim, B. H. Kim, J. S. Ra, K. J. Myung, H. T. Kim, S. H. Han, M. D. Seo, Y. S. Lee, D. W. Kim, Cancer Med. 10, 1002 (2022)
  16. N. Kurochkina and U. Guha, Biophys Rev. 5, 1 (2012)