DOI QR코드

DOI QR Code

Synthesis, Crystal structure, and Magnetic Properties of Dinuclear Iron(III) Complexes with Methoxo Bridges

  • Shin, Jong-Won (Department of Chemistry, Kyungpook National University) ;
  • Han, Jeong-Hyeong (Department of Chemistry Education, Kyungpook National University) ;
  • Rowthu, Sankara Rao (Department of Chemistry, Kyungpook National University) ;
  • Kim, Bong-Gon (Department of Chemistry Education, Gyeongsang National University) ;
  • Min, Kil-Sik (Department of Chemistry Education, Kyungpook National University)
  • Received : 2010.08.27
  • Accepted : 2010.10.04
  • Published : 2010.12.20

Abstract

The reaction of stoichiometric amount of $FeCl_2{\cdot}4H_2O$, (2-pyridylmethyl, 3-pyridylmethyl)amine (2,3-pyma) and sodium azide/sodium thiocyanate in methanol under aerobic conditions affords the dinuclear Fe(III) complexes, [(2,3-pyma) $(N_3)_2Fe({\mu}-OCH_3)_2Fe(N_3)_2$(2,3-pyma)]${\cdot}CH_3OH$ (1) and [(2,3-pyma)$(NCS)_2Fe({\mu}-OCH_3)_2Fe(NCS)_2$(2,3-pyma)] (2) in good yield. Two bis-methoxy-bridged diiron(III) complexes are isolated and characterized. The coordination geometries around iron(III) ions in 1 and 2 are the same tetragonally distorted octahedron. The iron(III) ions are coordinated by two nitrogens of a 2,3-pyma, two nitrogens of two azide/thiocyanate ions, and two oxygens of two methoxy groups. Both compounds are isomorphous. The structures of 1 and 2 display the C-$H{\cdots}\pi$ and/or $\pi-\pi$ stacking interactions as well as hydrogen bonding interactions, respectively. Compounds 1 and 2 show significant antiferromagnetic couplings through the bridged methoxy groups between the iron(III) ions in the temperature range from 5 to 300 K ($H=-2JS_1{\cdot}S_2$, J=-19.1 and $-13.9\;cm^{-1}$ for 1 and 2).

Keywords

References

  1. Kitagawa, S.; Kawata, S. Coord. Chem. Rev. 2002, 224, 11. https://doi.org/10.1016/S0010-8545(01)00369-1
  2. Tshuva, E. Y.; Lippard, S. J. Chem. Rev. 2004, 104, 987. https://doi.org/10.1021/cr020622y
  3. Benelli, C.; Gatteschi, D. Chem. Rev. 2002, 102, 2369. https://doi.org/10.1021/cr010303r
  4. Min, K. S.; DiPasquale, A. G.; Golen, J. A.; Rheingold, A. L.; Miller, J. S. J. Am. Chem. Soc. 2007, 129, 2360. https://doi.org/10.1021/ja067208q
  5. Zilbermann, I.; Maimon, E.; Cohen, H.; Meyerstein, D. Chem. Rev. 2005, 105, 2609. https://doi.org/10.1021/cr030717f
  6. Tao, J.; Maruyama, H.; Sato, O. J. Am. Chem. Soc. 2006, 128, 1790. https://doi.org/10.1021/ja057488u
  7. Chiari, B.; Piovesana, O.; Tarantelli, T.; Zanazzi, P. F. Inorg. Chem. 1984, 23, 3398. https://doi.org/10.1021/ic00189a026
  8. Ruiz, E.; Alemany, P.; Alvarez, S.; Cano, J. Inorg. Chem. 1997, 36, 3683. https://doi.org/10.1021/ic970310r
  9. Ruiz, E.; Alemany, P.; Alvarez, S.; Cano, J. J. Am. Chem. Soc. 1997, 119, 1297. https://doi.org/10.1021/ja961199b
  10. Menage, S.; Que, L., Jr. Inorg. Chem. 1990, 29, 4293. https://doi.org/10.1021/ic00346a026
  11. Han, J. H.; Shin, J. W.; Min, K. S. Bull. Korean Chem. Soc. 2009, 30, 1113. https://doi.org/10.5012/bkcs.2009.30.5.1113
  12. Chiari, B.; Piovesana, O.; Tarantelli, T.; Zanazzi, P. F. Inorg. Chem. 1982, 21, 1396. https://doi.org/10.1021/ic00134a025
  13. Walker, J. D.; Poli, R. Inorg. Chem. 1990, 29, 756. https://doi.org/10.1021/ic00329a037
  14. Li, F.; Wang, M.; Li, P.; Zhang, T.; Sun, L. Inorg. Chem. 2007, 46, 9364. https://doi.org/10.1021/ic700664u
  15. Shin, J. W.; Rowthu, S. R.; Kim, B. G.; Min, K. S. Dalton Trans. 2010, 39, 2765. https://doi.org/10.1039/c000412j
  16. Soibinet, M.; Dechamps-Oliver, I.; Mohamadou, A.; Aplincourt, M. Inorg. Chem. Commun. 2004, 7, 405. https://doi.org/10.1016/j.inoche.2003.12.026
  17. Saint Plus, v. 6.02; Bruker Analytical X-ray: Madison, WI, 1999.
  18. Sheldrick, G. M. SADABS: Siemens/Bruker Area Detector Absorption Correction Program, V2.03; University of Gottingen: Germany, 2000.
  19. Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467. https://doi.org/10.1107/S0108767390000277
  20. Sheldrick, G. M. SHELXL97: Program for the Crystal Structure Refinement; University of Gottingen: Germany, 1997.
  21. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; WILEY: New Jersey, 2009; pp 120-131.
  22. Desiraju, G. R. Crystal Engineering: The Design of Organic Solids; Elsevier: New York, 1989; Chap. 4.
  23. Shetty, A. S.; Zhang, J.; Moore, J. S. J. Am. Chem. Soc. 1996, 118, 1019. https://doi.org/10.1021/ja9528893
  24. Jennings, W. B.; Farrell, B. M.; Malone, J. F. Acc. Chem. Res. 2001, 34, 885. https://doi.org/10.1021/ar0100475
  25. Kahn, O. Molecular Magnetism; VCH: New York, 1993; pp 103- 134.
  26. Chiari, B.; Piovesana, O.; Tarantelli, T.; Zanazzi, P. F. Inorg. Chem. 1983, 22, 2781. https://doi.org/10.1021/ic00161a030
  27. Kato, M.; Yamada, Y.; Inagaki, T.; Mori, W.; Sakai, K.; Tsubomura, T.; Sato, M.; Yano, S. Inorg. Chem. 1995, 34, 2645. https://doi.org/10.1021/ic00114a024
  28. Ghiladi, M.; Larsen, F. B.; McKenzie, C. J.; Søtofte, I.; Tuchagues, J.-P. Dalton Trans. 2005, 1687.
  29. Min, K. S.; Arif, A. M.; Miller, J. S. Inorg. Chim. Acta 2007, 360, 1854.

Cited by

  1. Isolation and characterization of a tetranuclear Pt–Fe⋯Fe–Pt intermediate en route to the trinuclear Pt–Fe–Pt cluster vol.46, pp.40, 2017, https://doi.org/10.1039/C7DT02583A
  2. Sulfur‐linked Phenolates as Ligands for the Syntheses of Low‐Nuclearity Iron(III) Complexes vol.638, pp.14, 2010, https://doi.org/10.1002/zaac.201200389
  3. Catalysis and molecular magnetism of dinuclear iron(III) complexes with N-(2-pyridylmethyl)-iminodiethanol/-ate vol.43, pp.10, 2010, https://doi.org/10.1039/c3dt53376j
  4. Two Novel Binuclear Lanthanide Complexes with 2,5‐Dichlorobenzoic Acid and 5,5’‐Dimethyl‐2,2’‐bipyridine: Crystal Structures, Luminescence and Thermal Propertie vol.3, pp.27, 2010, https://doi.org/10.1002/slct.201800871