DOI QR코드

DOI QR Code

Mitochondrial Affinity of Guanidine-rich Molecular Transporters Built on myo- and scyllo-Inositol Scaffolds: Stereochemistry Dependency

  • Ghosh, Subhash C. (Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Bo-Ram (Department of Chemistry, Pohang University of Science and Technology) ;
  • Im, Jung-Kyun (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Woo-Sirl (Department of Chemistry, Pohang University of Science and Technology) ;
  • Im, Chang-Nim (Department of Chemistry, National University of Singapore, Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR) Biopolis) ;
  • Chang, Young-Tae (Department of Chemistry, National University of Singapore, Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR) Biopolis) ;
  • Kim, Wan-Il (Department of Life Science, Pohang University of Science and Technology) ;
  • Kim, Kyong-Tai (Department of Life Science, Pohang University of Science and Technology) ;
  • Chung, Sung-Kee (Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2010.07.06
  • Accepted : 2010.10.04
  • Published : 2010.12.20

Abstract

We prepared several novel molecular transporters built on myo- and scyllo-inositol scaffolds with variations in the number of guanidine residues, linker chain lengths and patterns. Some of these transporters were found to localize in mitochondria, and the mitochondrial affinity seems to be substantially related to the scaffold stereochemistry.

Keywords

References

  1. Langel, U. Handbook of Cell-Penetrating Peptides, 2nd ed.; CRC Press: Boca Raton, 2006.
  2. Wender, P. A.; Galliher, W. C.; Goun, E. A.; Jones, L. R.; Pillow, T. H. Adv. Drug Deliv. Rev. 2008, 60, 452-472. https://doi.org/10.1016/j.addr.2007.10.016
  3. Nakase, I.; Takeuchi, T.; Tanaka, G.; Futaki, S. Adv. Drug Deliv. Rev. 2008, 60, 598-607. https://doi.org/10.1016/j.addr.2007.10.006
  4. Jolit, A.; Prochiantz, A. Nature Cell Biol. 2004, 6, 189-196. https://doi.org/10.1038/ncb0304-189
  5. Chung, S. K.; Maiti, K. K.; Lee, W. S. Int. J. Pharmaceutics 2008, 354, 16-21. https://doi.org/10.1016/j.ijpharm.2007.08.016
  6. Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.; Steinman, L.; Rothbard, J. B. Proc. Nat. Acad. Sci. USA 2000, 97, 13003-13008. https://doi.org/10.1073/pnas.97.24.13003
  7. Wender, P. A.; Rothbard, J. B.; Jessop, T. C.; Kreider, E. L.; Wylie, B. L. J. Am. Chem. Soc. 2002, 124, 13382-13383. https://doi.org/10.1021/ja0275109
  8. Umezawa, N.; Gelman, M. A.; Haigis, M. C.; Raines, R. T.; Gellman, S. H. J. Am. Chem. Soc. 2002, 124, 368-369. https://doi.org/10.1021/ja017283v
  9. Rueping, N.; Mahajan, Y.; Sauer, M.; Seebach, D. Chem BioChem 2002, 257-259.
  10. Zhou, P.; Wang, M.; Du, L.; Fisher, G. W.; Waggoner, A.; Ly, D. H. J. Am. Chem. Soc. 2003, 125, 6878-6879. https://doi.org/10.1021/ja029665m
  11. Luedtke, N. W.; Carmichael, P.; Tor, Y. J. Am. Chem. Soc. 2003, 125, 12374-12375. https://doi.org/10.1021/ja0360135
  12. Fernandez-Carneado, J.; Van Gool, M.; Martos, V.; Castel, S.; Prados, P.; de Mendoza, J.; Giralt, E. J. Am. Chem. Soc. 2005, 127, 869-874. https://doi.org/10.1021/ja044006q
  13. Chung, H. H.; Harms, G.; Seong, C. M.; Choi, B. H.; Min, C.; Taulane, J. P.; Goodman, M. Biopolymers 2004, 76, 83-96. https://doi.org/10.1002/bip.10597
  14. Maiti, K. K.; Jeon, O. Y.; Lee, W. S.; Kim, D. C.; Kim, K. T.; Takeuchi, T.; Futaki, S.; Chung, S. K. Angew. Chem. Int. Ed. 2006, 45, 2907-2912. https://doi.org/10.1002/anie.200600312
  15. Maiti, K. K.; Lee, W. S.; Takeuchi, T.; Watkins, C.; Fretz, M.; Kim, D. C.; Futaki, S.; Jones, A.; Kim, K. T.; Chung, S. K. Angew. Chem. Int. Ed. 2007, 46, 5880-5884. https://doi.org/10.1002/anie.200701346
  16. Biswas, G.; Jeon, O. Y.; Lee, W. S.; Lee, S.; Chang, S.; Kim, D. C.; Kim, K. T.; Chung, S. K. Chem. Eur. J. 2008, 14, 9161-9168. https://doi.org/10.1002/chem.200801160
  17. Lee, W. S.; Im, C. N.; Teng, Q. Y.; Chang, Y. T.; Kim, D. C.; Kim, K. T.; Chung, S. K. Mol. Biosyst. 2009, 5, 822-825. https://doi.org/10.1039/b901846h
  18. Weissig, V.; Cheng, S. M.; D’Souza, G. G. M. Mitochondrion 2004, 3, 229-244. https://doi.org/10.1016/j.mito.2003.11.002
  19. Hoye, A. T.; Davoren, J. E.; Wipf, P.; Fink, M. P.; Kagan, V. E. Acc. Chem. Res. 2008, 41, 87-97. https://doi.org/10.1021/ar700135m
  20. Yamada, Y.; Harashima, H. Adv. Drug Deliv. Rev. 2008, 60, 1439-1462. https://doi.org/10.1016/j.addr.2008.04.016
  21. Wallace, D. C. Science 1999, 283, 1482-1488. https://doi.org/10.1126/science.283.5407.1482
  22. Green, D. R.; Reed, J. C. Science 1998, 281, 1309-1312. https://doi.org/10.1126/science.281.5381.1309
  23. Dawson, V. L. Nat. Med. 2004, 10, 905-906. https://doi.org/10.1038/nm0904-905
  24. Bae, B. I.; Igarashi, S.; Fujimori, M.; Argrawal, N.; Taya, Y.; Hayward, S. D.; Moran, T. H.; Ross, C. A.; Snyder, S. H.; Sawa, A. Neuron 2005, 47, 29-41. https://doi.org/10.1016/j.neuron.2005.06.005
  25. Manczak, M.; Anekonda, T. S.; Henson, E.; Park, B. S.; Quinn, J.; Reddy, P. M. Hum. Mol. Genet. 2006, 15, 1437-1449. https://doi.org/10.1093/hmg/ddl066
  26. Khersonskt, S. M.; Chang, Y. T. Carbohydr. Res. 2002, 337, 75-78. https://doi.org/10.1016/S0008-6215(01)00286-5
  27. Chung, S. K.; Kwon, Y. U.; Chang, Y. T.; Sohn, K. H.; Shin, J. H.; Hong, B. J.; Chung, I. H. Bioorg. Med. Chem. 1999, 7, 2577-2589. https://doi.org/10.1016/S0968-0896(99)00183-2
  28. Haky, J. E.; Young, A. M. J. Liq. Chromatogr. 1984, 7, 675-689. https://doi.org/10.1080/01483918408073995
  29. Lombardo, F.; Shalaeva, M. Y.; Tupper, K. A.; Gao, F.; Abraham, M. H. J. Med. Chem. 2000, 43, 2922-2928. https://doi.org/10.1021/jm0000822
  30. Lombardo, F.; Shalaeva, M.; Tupper, K. A.; Gao, F. J. Med. Chem. 2001, 44, 2490-2497.

Cited by

  1. Mitochondria-Targeted Small Molecule Therapeutics and Probes vol.15, pp.12, 2011, https://doi.org/10.1089/ars.2011.3969
  2. vol.2012, pp.29, 2012, https://doi.org/10.1002/ejoc.201200726
  3. On Guanidinium and Cellular Uptake vol.79, pp.15, 2014, https://doi.org/10.1021/jo501101s
  4. Synthesis of Ibuprofen Conjugated Molecular Transporter Capable of Enhanced Brain Penetration vol.2017, pp.2090-9071, 2017, https://doi.org/10.1155/2017/4746158
  5. pp.12295949, 2018, https://doi.org/10.1002/bkcs.11611
  6. A Blood-brain Barrier Permeable Derivative of 5-Fluorouracil: Preparation, Intracellular Localization, and Mouse Tissue Distribution vol.32, pp.3, 2010, https://doi.org/10.5012/bkcs.2011.32.3.873
  7. Mitochondrial Affinity of Guanidine-rich Molecular Transporters Built on Monosaccharide Scaffolds: Stereochemistry and Lipophilicity vol.32, pp.7, 2010, https://doi.org/10.5012/bkcs.2011.32.7.2286