• Title/Summary/Keyword: Magnetic interactions

Search Result 215, Processing Time 0.021 seconds

Interactions in transversely isotropic new modified couple stress solid due to Hall current, rotation, inclined load with energy dissipation

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2024
  • This paper is concerned with the disturbances in a transversely isotropic new modified couple stress homogeneous thermoelastic rotating medium under the combined influence of Hall currents, magnetic fields, and mechanical sources represented by inclined loads. The application of Laplace and Fourier transform techniques are used for the derivation of analytical expressions for various physical quantities. As an application,the bounding surface is subjected to uniformly and linearly distributed force (mechanical force). Present model contains length scale parameters that can capture the size effects. Numerical inversion techniques has been used to provide insights into the system's behavior in the physical domain. The graphical representation of numerical simulated results has been presented to emphasize the impact of rotation and inclined line loads on the system, enhancing our understanding of the studied phenomena. Further research can extend this study to investigate additional complexities and real-world applications.

Interactions and Ionic Conductivities of Poly(epichlorohydrin) Graft Copolymer Electrolyte Membranes (Poly(epichlorohydrin) 가지형 공중합체 전해질막의 상호작용 및 이온 전도도)

  • Koh, Joo-Hwan;Lee, Kyung-Ju;Park, Jung-Tae;Ahn, Sung-Hoon;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • Amphiphilic graft copolymers based on poly(epichlorohydrine) (PECH) were synthesized using atom transfer radical polymerization (ATRP). Successful graft polymerization of poly(methyl methacrylate)(PMMA) and poly(butyl methacrylate) (PBMA) from PECH was confirmed by nuclear magnetic resonance ($^1H$ NMR) and FT-IR spectroscopy. Upon the introduction of KI or LiI to the graft copolymers, the ether stretching bands were shifted to a lower wavenumber due to coordinative interactions. Ionic conductivities of PECH-g-PBMA complexes were always higher than those of PECH-g-PMMA complexes, resulting from higher mobility of rubbery PBMA chains. The maximum ionic conductivity of $2.7{\times}10^{-5}\;S/cm$ was obtained at 10 wt% of KI for PECH-g-PBMA electrolytes.

Mössbauer Studies on Magnetoresistance in Chalcogenide Fe0.9M0.1Cr2S4 (M=Co, Ni, Zn) (Chalcogenide Fe0.9M0.1Cr2S4(M=Co, Ni, Zn)의 자기저항에 관한 Mössbauer 분광연구)

  • Park, Jae Yun;Lee, Byoung-Seob
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-48
    • /
    • 2013
  • The Jahn-Teller distortion of chalcogenide $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) have been investigated by M$\ddot{o}$ssbauer spectroscopy. The crystal structures of $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) are cubic spinel at room temperature. Magnetoresistance measurements indicate these system is conducting-semiconducting transistion around $T_C$. Below $T_C$, the asymmetric line broadening is observed and considered to be dynamic Jahn-Teller distortion. Isomer shift value of the samples at room temperature was about 0.5 mm/s, which means that charge state of Fe ions is ferrous in character. The Ni substitutions for Fe occur to increase the Jahn-Teller relaxation. CMR properties could be explained with magnetic polaron due to Jahn-Teller effect, which is different from both the double exchange interactions of manganite system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.

Synthesis and Characterization of Octamethylenethiafulvalene Compounds with Osmium, Iridium, Platinium and Gold Chloride (Octamethylenethiafulvalene과 염화오스뮴, 이리듐, 백금 및 금 화합물의 합성과 특성에 관한 연구)

  • Jeong, Chan Kyou;Lee, Hong Woo;Kim, Young Jin;Choi, Sung Nak;Kim, Young Inn
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.442-447
    • /
    • 2001
  • The charge-transfer compound (OMTTF)AuCl$_4$ was prepared from the direct reaction of octamethylenethiafulvalene (OMTTF) with HAuCl$_4{\cdot}xH_2$O in THF. (OMTTF)$_2PtCl_4$, (OMTTF)_2IrCl_6{\cdot}2H_2$O, and (OMTTF)Os$Cl_5{\cdot}THF$ were also formed using $H_2PtCl_6{\cdot}xH_2O$, $H_2IrCl_6{\cdot}xH_2O$ and $H_2OsCl_6$, respectively. The prepared compounds were characterized by magnetic (EPR, magnetic susceptibility), spectroscopic (IR, UV-Vis), electrochemical (CV) methods, and the powdered electrical conductivity measurement. The powdered electrical conductivities at room temperature were ~$10^{-7}S{\cdot}cm^{-1}$. The experimental results show that $OMTTF^+$ monocation radicals exist in all of the prepared compounds. The redox potential of OMTTF supports that $OMTTF^+$ is relatively stable. The magnetic properties indicate that there are significant magnetic interactions between the localized odd electrons on the central metal (Ir and Os) ions and the odd electrons resided on $OMTTF^+$ cation radicals in both (OMTTF) $_2IrCl_6{\cdot}2H_2O$ and (OMTTF)$OsCl_5{\cdot}THF$.

  • PDF

The Application of Brain Stimulation in Psychiatric Disorders : An Overview (정신질환에서 뇌자극술의 적용)

  • Roh, Daeyoung;Kang, Lee Young;Kim, Do Hoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • Based on advances in biotechnology and neuroscience, neuromodulation is poised to gain clinical importance as a treatment modality for psychiatric disorders. In addition to old-established electroconvulsive therapy (ECT), clinicians are expected to understand newer forms of neurostimulation, such as deep brain stimulation (DBS), vagus nerve stimulation (VNS), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). Given the growing interest in non-invasive neuromodulation technologies, clinicians may seek sufficient information about neuromodulation to inform their clinical practice. A growing literature suggests that applications of non-invasive neuromodulation have evidence particularly for indications where treatments are currently insufficient, such as drug-resistant depression. However, positive neuromodulation studies require replication, and the precise interactions among stimulation, antidepressant medication, and psychotherapy are unknown. Further studies of long-term safety and the impact on the developing brain are needed. Non-invasive neuromodulatory devices could enable more individualized treatment. However, do-it-yourself (DIY) stimulation kits require a better understanding of the effects of more frequent patterns of stimulation and raise concerns about clinical supervision, regulation, and reimbursement. Wide spread enthusiasm for therapeutic potential of neuromodulation in clinical practice settings should be mitigated by the fact that there are still research gaps and challenges associated with non-invasive neuromodulatory devices.

Structural characterization of calmodulin like domain of ryanodine receptor type 1

  • Song, Yonghyun;Kang, Sunmi;Park, Sunghyouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • Ryanodine receptor (RyR) is one of the two major $Ca^{2+}$ channels in membranes of intracellular $Ca^{2+}$ stores and is found in sarcoplasmic reticulum (SR), endoplasmic reticulum (ER). RyR1 is also the major calmodulin-binding protein of sarcoplasmic reticulum membranes. Residues 4064-4210 in the RyR1 polypeptide chain has similar primary sequence with calmodulin (CaM) and was designated as CaM-like domain (CaMLD). When expressed as a recombinant peptide, CaMLD showed several CaM-like properties in previous studies. Still, previous studies of CaMLD were focused on protein-protein interactions rather than its own properties. Here, we studied the expression of CaMLD and its sub-domains corresponding to each lobe of CaM in Escherichia coli. CaMLD could be obtained only as inclusion body, and it was refolded using urea solubilization followed by dialysis. Using spectroscopic approaches, such as NMR, circular dichroism, and gel filtration experiment, we found that the refolded CaMLD exists as nonspecific aggregate, even though it has alpha helical secondary structure. In comparison, the first half of CaMLD (R4061-4141) could be obtained as natively soluble protein with thioredoxin fusion. After the removal of the fusion tag, it exhibited folded and helical properties as shown by NMR and circular dichroism experiments. Its oligomeric status was different from CaMLD, existing as dimeric form in solution. However, the second half of the protein could not be obtained as soluble protein regardless of fusion tag. Based on these results, we believe that CaMLD, although similar to CaM in sequence, has quite different physicochemical properties and that the second half of the protein renders it the aggregative properties.

Intrinsically disordered fold of a PIAS1-binding domain of CP2b

  • Jo, Ku-Sung;Jo, Hae-Ri;Kim, Chul Geun;Kim, Chan-Gil;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.30-35
    • /
    • 2014
  • The transcription factor CP2 regulates various biological systems at diverse tissues and cells. However, none of the four CP2 isoforms has been solved in structure yet. In particular, two different regions of the CP2b isoform have been characterized to interact with the PIAS1 in nucleus to regulate the ${\alpha}$-globin gene expression. Among them, in this study, the region encompassing residues 251-309 of CP2b was prepared as a recombinant protein and its solution structure was characterized by NMR spectroscopy. The results indicated that the CP2b(251-309) fold belongs to typical IDRs (intrinsically disordered regions), likely to facilitate promiscuous interactions with various target proteins. Unfortunately, however, its interaction with the N-terminal domain of PIAS1 (residues 1-70), which has been identified as one of the CP2b-binding sites, was not observed in the NMR-based titration experiments. Therefore, it could be postulated that the 251-309 region of CP2b would not contact with the PIAS1(1-70), but alternatively interact with another CP2b-binding region that encompasses residues 400-651 of PIAS1.

Adsorbate Interactions of Cu(II) Ion-Exchanged into Mesoporous Aluminosilicate MCM-41 Analyzed by Electron Spin Resonance and Electron Spin Echo Modulation

  • Kim, Jeong-Yeon;Yu, Jong-Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.109-126
    • /
    • 1999
  • The location of Cu(II) exchanged into measoporous aluminosilicate MCM-41(AlMCM-41) material and its interaction with various adsorbate molecules were investigated by electron spin resonance and electron spin echo modulation spectroscopies. Cu(II) is fully coordinated to adsorbates in a wide open mesopore of AlMCM-41 for the formation of favorable complexes. It was found that in the fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules as evidenced by an isotropic room temperature ESR signal. This species is located in a cylindrical MCM-41 channel and rotates rapidly at room temperature. Evacuation at room temperature removes some of these water molecules, leaving the Cu(II) coordinated to less water molecules and anchored to oxygens in an MCM-41 channel wall. Dehydration at 450$^{\circ}C$ produces one Cu(II) species located on the internal wall of a channel, which is easily accessible to adsorbates. Adsorption of adsorbate molecules such as water, methanol, ammonia, pyridine, aniline, acetonitrile, benzene, and ethylene on a dehydrated Cu-AlMCM-41 material causes changes in the ESR spectrum of Cu(II), indicating the complex formation with these adsorbates. Cu(II) forms a complex with six molecules of methanol as evidenced by an isotropic room temperature ESR signal and ESEM analysis like upon water adsorption. Cu(II) also forms a square planar complex containing four molecules of N-containing adsorbates such as ammonia, pyridine and aniline based on resolved nitrogen superhyperfine interaction and their ESR parameters. However, Cu(II) forms a complex with six-molecules of acetonitrile based on ESR parameters. Only one molecule of benzene or ethylene is coordinated to Cu(II).

  • PDF

V(IV) Species, Location and Adsorbate Interactions in VH-SAPO-42 Studied by ESR and Electron Spin-Echo Modulation Spectroscopies

  • Back, Gern-Ho;Yu, Jong-Sung;Lee, Hye-Young;Kim, Min-Sik;Lee, Yong-Ill
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.2
    • /
    • pp.95-109
    • /
    • 2007
  • Vanadium-incorporated aluminophosphate microporous molecular sieve VH-SAPO-42 has been studied by electron spin resonance(ESR) and electron spin-echo modulation (ESEM) spectroscopies to determine the vanadium location and interaction with various adsorbate molecules. The results are interpreted in terms of V(IV) ion location and coordination geometry. Assynthesized VH-SAPO-42 contains only vanadyl species with distorted octahedral or trigonal bipyramidal coordination. Vanadium incorporated into H-SAPO-42 occupied extra-framework site. After calcinations in $O_2$ and exposure to moisture, only species A is observed with reduced intensities. Species A is identified as a $VO(H_2O)_2^{2+}$ complex coordinated to three framework oxygen atoms bonded to aluminum. When hydrated VH-SAPO-42 is dehydrated at elevated temperature by calcination, species A loses its water ligand and transforms to $VO^{2+}$ ions coordinated to three framework oxygens (species B). Species B reduces its intensities significantly after treatment with $O_2$ at high temperature, thus suggesting oxidation of $V^{4+}$ to $V^{5+}$. When dehydrated VH-SAPO-42 makes contact with $D_2O$ at room temperature, the ESR signal of species A is regained. The species is assumed as a $VO(O_f)_3(D_2O)_2$ by considering three framework oxygens. Adsorption of deuterated methanol on dehydrated VH-SAPO-42 results in another new vanadium species D, which is identified as a $VO(CD_3OH)_2$ complex. When deuterated ethylene is adsorbed on dehydrated VH-SAPO-42, another new vanadium species E identified as a $VO(C_2D_4)^{2+}$, is observed. Possible coordination geometries of these various complexes are discussed.

  • PDF

Colossal Magnetoresistance in Chalcogenide Spinels $Ni_xFe_{1-x}Cr_2S_4(X = 0.05, 0.1, 0.2)$ (Spinel 유화물 $Ni_xFe_{1-x}Cr_2S_4(X = 0.05, 0.1, 0.2)$의 초거대자기저항(CMR)현상에 관한 연구)

  • 박재윤
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2001
  • Recently many studies on manganese oxides Ln$_{1-x}$A$_{x}$MnO$_3$(Ln=La, Pr, Nd lanthannide; A=Ca, Sr, Ba, Pb +2 ions) reported CMR properties. CMR have been also found in chalcogenide spinels. We have investigated that Ni ion substitutions for Fe ion have effects on CMR properties in chacogenide spinels Ni$_{x}$Fe$_{1-x}$Cr$_2$S$_4$. It was found that with increasing Ni concentration Jahn-Teller distortion was strengthened and Curie temperature T$_{c}$ was increased. CMR properties could be explained with Jahnl-Teller effect, half-metallic electronic structure, and the alignment of magnetic domain due to the strong magnetic field, which is different in that double exchange interactions dominate CMR properties in manganese oxides.

  • PDF