DOI QR코드

DOI QR Code

Intrinsically disordered fold of a PIAS1-binding domain of CP2b

  • Jo, Ku-Sung (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Jo, Hae-Ri (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Kim, Chul Geun (Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University) ;
  • Kim, Chan-Gil (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Won, Hyung-Sik (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
  • Received : 2014.05.11
  • Accepted : 2014.06.10
  • Published : 2014.06.20

Abstract

The transcription factor CP2 regulates various biological systems at diverse tissues and cells. However, none of the four CP2 isoforms has been solved in structure yet. In particular, two different regions of the CP2b isoform have been characterized to interact with the PIAS1 in nucleus to regulate the ${\alpha}$-globin gene expression. Among them, in this study, the region encompassing residues 251-309 of CP2b was prepared as a recombinant protein and its solution structure was characterized by NMR spectroscopy. The results indicated that the CP2b(251-309) fold belongs to typical IDRs (intrinsically disordered regions), likely to facilitate promiscuous interactions with various target proteins. Unfortunately, however, its interaction with the N-terminal domain of PIAS1 (residues 1-70), which has been identified as one of the CP2b-binding sites, was not observed in the NMR-based titration experiments. Therefore, it could be postulated that the 251-309 region of CP2b would not contact with the PIAS1(1-70), but alternatively interact with another CP2b-binding region that encompasses residues 400-651 of PIAS1.

Keywords

References

  1. J. Veljkovic, U. Hansen, Gene 343, 23. (2004). https://doi.org/10.1016/j.gene.2004.08.010
  2. H. C. Kang, J. H. Chae, B. S. Kim, S. Y. Han, S. H. Kim, C. K. Auh, S. I. Yang, C. G. Kim, Mol. Cells 17, 454. (2004).
  3. H. C. Kang, J. H. Chae, K. S. Choi, J. H. Shin, C. G. Kim, C. G. Kim, Nucleic Acids Res. 38, 5456. (2010). https://doi.org/10.1093/nar/gkq286
  4. H. J. Chae, H. C. Kang, C. G. Kim (2009), Biochem. Biophys. Res. Commun. 380, 813. (2009). https://doi.org/10.1016/j.bbrc.2009.01.172
  5. K. M. Barnhart, C. G. Kim, S. S. Banerji, M. Sheffery, Mol. Cell Biol. 8, 4270. (1988).
  6. C. G. Kim, K. M. Barnhart, M. Sheffery, Mol. Cell Biol. 8, 4270. (1988). https://doi.org/10.1128/MCB.8.10.4270
  7. D. W. Sim, Y. S. Lee, J. H. Kim, M. D. Seo, B. J. Lee, H. S. Won, BMP Rep. 42, 387. (2009). https://doi.org/10.5483/BMBRep.2009.42.6.387
  8. Y. S. Lee, K. S. Ryu, Y. Lee, S. Kim, K. W. Lee, H. S. Won, J. Kor. Magn. Reson. Soc. 15, 137. (2011). https://doi.org/10.6564/JKMRS.2011.15.2.137
  9. V. N. Uversky, Biochim. Biophys. Acta 1834, 932. (2013). https://doi.org/10.1016/j.bbapap.2012.12.008
  10. R. Konrat, J. Magn. Reson. 241, 74. (2014). https://doi.org/10.1016/j.jmr.2013.11.011
  11. D. H. Kim, S. H. Lee, K. H. Nam, S. W. Chi, I. Chang, K. H. Han, BMB Rep. 42, 411. (2009). https://doi.org/10.5483/BMBRep.2009.42.7.411
  12. S. H. Lee, E. J. Cha, J. E. Lim, S. H. Kwon, D. H. Kim, H. Cho, K. H. Han, Mol. Cells 34, 165. (2012). https://doi.org/10.1007/s10059-012-0060-z
  13. S. H. Lee, D. H. Kim, J. J. Han, E. J. Cha, J. E. Lim, Y. J. Cho, K. H. Han, Curr. Prot. Pept. Sci. 13, 34. (2012). https://doi.org/10.2174/138920312799277974
  14. D. W. Sim, K. S. Jo, K. S. Ryu, E. H. Kim, H. S. Won, J. Kor. Magn. Reson. Soc. 16, 22. (2012). https://doi.org/10.6564/JKMRS.2012.16.1.022
  15. J. M. Kim, H. S. Won, S. O. Kang, J. Kor. Magn. Reson. Soc. 17, 59. (2013).