DOI QR코드

DOI QR Code

Enhanced Chemical Shift Analysis for Secondary Structure prediction of protein

  • Received : 2014.05.10
  • Accepted : 2014.06.10
  • Published : 2014.06.20

Abstract

Predicting secondary structure of protein through assigned backbone chemical shifts has been used widely because of its convenience and flexibility. In spite of its usefulness, chemical shift based analysis has some defects including isotopic shifts and solvent interaction. Here, it is shown that corrected chemical shift analysis for secondary structure of protein. It is included chemical shift correction through consideration of deuterium isotopic effect and calculate chemical shift index using probability-based methods. Enhanced method was applied successfully to one of the proteins from Mycobacterium tuberculosis. It is suggested that correction of chemical shift analysis could increase accuracy of secondary structure prediction of protein and small molecule in solution.

Keywords

References

  1. Wuthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York) (1986).
  2. Cornilescu, G., Delaglio F., Bax A. J. Biomol. NMR 13, 289-302. (1999). https://doi.org/10.1023/A:1008392405740
  3. Wishart, D. S., Case, D. A. Methods Enzymol. 338, 3-34. (2001).
  4. Sanders, J. K. M., Hunter, B. K. Modern NMR Spectroscopy (Oxford Univ. Press, Oxford, UK) (1993).
  5. Wishart, D. S., Sykes, B. D., Richards, F. M. Biochemistry 31, 1647-1651. (1992). https://doi.org/10.1021/bi00121a010
  6. Lee, K., Kang, S., Bae, Y., Lee, K., Kim, J., Lee, I., Lee, B. J. Kor. Mag. Reson. Soc. 17, 105-110. (2014). https://doi.org/10.6564/JKMRS.2013.17.2.105
  7. Sattler, M., Fesik, S. W. Structure 4, 1245-1249. (1996). https://doi.org/10.1016/S0969-2126(96)00133-5
  8. Hansen, P. E. Prog. Nucl. Mag. Res. Sp. 20, 207-255. (1988). https://doi.org/10.1016/0079-6565(88)80002-5
  9. Yi, J., Yoo, J. K., Kim, J. K., Son, W. S. J. Kor. Magn. Reson. Soc. 17, 30-39. (2013). https://doi.org/10.6564/JKMRS.2013.17.1.030
  10. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., Bax, A. J. Biomol. NMR 6, 277-293. (1995).
  11. Johnson, B. A., Blevins, R. A. J. Biomol. NMR 4, 603-614. (1994). https://doi.org/10.1007/BF00404272
  12. Wishart, D. S., Sykes, B. D. J. Biomol. NMR 4, 171-180. (1994).
  13. Wishart, D. S., Sykes, B. D. Methods Enzymol. 239, 363-392. (1994). https://doi.org/10.1016/S0076-6879(94)39014-2
  14. Gardner, K. H., Rosen, M. K., Kay, L. E. Biochemistry 36, 1389-1401. (1997). https://doi.org/10.1021/bi9624806
  15. Shan, X. J., Gardner, K. H., Muhandiram, D. R., Kay, L. E., Arrowsmith, C. H. J. Biomol. NMR 11, 307-318. (1998). https://doi.org/10.1023/A:1008257803130
  16. Venters, R. A., Farmer, B. T., Fierke, C. A., Spicer, L. D. J. Mol. Biol. 264, 1101-1116. (1996). https://doi.org/10.1006/jmbi.1996.0699
  17. Gardner, K. H., Kay, L. E. J. Am. Chem. Soc. 119, 7599-7600. (1997). https://doi.org/10.1021/ja9706514
  18. Wang, Y., Jardetzky, O. J. Am. Chem. Soc. 124, 14075-14084. (2002). https://doi.org/10.1021/ja026811f
  19. Wang, Y. J. Biomol. NMR 30, 233-244. (2004). https://doi.org/10.1007/s10858-004-3098-1
  20. Wang, Y., Jardetzky, O. Protein Sci. 11, 852-861. (2002). https://doi.org/10.1110/ps.3180102
  21. Metzler, W. J., Constantine, K. L., Friedrichs, M. S., Bell, A. J., Ernst, E. G., Lavoie, T. B., Mueller, L. Biochemistry 32, 13818-13829. (1993). https://doi.org/10.1021/bi00213a010
  22. Metzler, W. J., Leiting, B., Pryor, K., Mueller, L., Farmer, B. T. Biochemistry 35, 6201-6211. (1996). https://doi.org/10.1021/bi960157x

Cited by

  1. Structure-Activity Relationship of the N-terminal Helix Analog of Papiliocin, PapN vol.19, pp.2, 2015, https://doi.org/10.6564/JKMRS.2015.19.2.054