DOI QR코드

DOI QR Code

Mössbauer Studies on Magnetoresistance in Chalcogenide Fe0.9M0.1Cr2S4 (M=Co, Ni, Zn)

Chalcogenide Fe0.9M0.1Cr2S4(M=Co, Ni, Zn)의 자기저항에 관한 Mössbauer 분광연구

  • Park, Jae Yun (Dept. of Materials Science and Engineering, Incheon National University) ;
  • Lee, Byoung-Seob (ECR Ion Source/Compact Linear Accelerator Group, Korea Basic Science Institute Busan Center)
  • 박재윤 (인천대학교 신소재공학과) ;
  • 이병섭 (ECR이온원/소형가속기 연구그룹, 한국기초과학지원연구원 부산센터)
  • Received : 2013.02.28
  • Accepted : 2013.03.14
  • Published : 2013.04.30

Abstract

The Jahn-Teller distortion of chalcogenide $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) have been investigated by M$\ddot{o}$ssbauer spectroscopy. The crystal structures of $Fe_{0.9}M_{0.1}Cr_2S_4$ (M=Co, Ni, Zn) are cubic spinel at room temperature. Magnetoresistance measurements indicate these system is conducting-semiconducting transistion around $T_C$. Below $T_C$, the asymmetric line broadening is observed and considered to be dynamic Jahn-Teller distortion. Isomer shift value of the samples at room temperature was about 0.5 mm/s, which means that charge state of Fe ions is ferrous in character. The Ni substitutions for Fe occur to increase the Jahn-Teller relaxation. CMR properties could be explained with magnetic polaron due to Jahn-Teller effect, which is different from both the double exchange interactions of manganite system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.

Chalcogenide $Fe_{0.9}M_{0.1}Cr_2S_4$(M=Co, Ni, Zn)에 대하여 X-선 회절법, 자기저항측정, Mossbauer 분광법을 이용하여 CMR특성과 자기적 성질을 연구하였다. 10 at%의 M 치환에서는 상온에서 입방정으로 정상 spinel 구조를 갖는 것으로 나타났다. 자기저항 실험결과 $T_C$ 부근에서는 도체-반도체 전이의 특성을 보이며 최대자기저항 온도가 나타났다. M$\ddot{o}$ssbauer 분광 실험 결과에서 Fe에 대한 Ni 치환은 초교환 상호작용을 강화시키고 Jahn-Teller 효과에 의한 완화 현상의 심화를 보여준다. CMR 특성은 망간산화물의 $Mn^{3+}$$Mn^{4+}$ 사이의 이중교환상호작용과 다르게 동적 Jahn-Teller 효과와 관계된 polaron에 기인한 도체-반도체 전이 의한 것으로 해석된다.

Keywords

References

  1. H. Kondo, J. Phys. Soc. Japan 41, 1247 (1976). https://doi.org/10.1143/JPSJ.41.1247
  2. F. K. Lotgering, J. Phys. Chem. Solids 29, 2193 (1968). https://doi.org/10.1016/0022-3697(68)90015-2
  3. B. Boucher, R. Buhl, and M. Perrin, Acata Crystallogr., Sect. B25, 2326 (1969).
  4. M. Mejai and M. Nogues, J. Magn. Magn. Mater. 15, 487 (1980).
  5. Z. Yang, S. Tan, Z. Chen, and Y. Zang, Phys. Rev. B 62 13872 (2000). https://doi.org/10.1103/PhysRevB.62.13872
  6. S. Jin, T. H. Tiefel, M. McCormick, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994). https://doi.org/10.1126/science.264.5157.413
  7. B. Raveau. A. Maignan, C. Martin, and M. Hervieu, Chem. Mater. 10, 2641 (1998). https://doi.org/10.1021/cm9801791
  8. G. H. Jonker and J. H. Van Santen, Physica 16, 337 (1950). https://doi.org/10.1016/0031-8914(50)90033-4
  9. R. von Helmholt, J. Wecker, B. Holzafel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993). https://doi.org/10.1103/PhysRevLett.71.2331
  10. R. M. Kusters, J. Singleton, D. A. Keen, R. L. McGreevy, and W. Hayes, Physica B 155, 362 (1989). https://doi.org/10.1016/0921-4526(89)90530-9
  11. A. P. Ramirez, R. J. Cava, and J. Krajewski, Nature 386, 156 (1997). https://doi.org/10.1038/386156a0
  12. L. Brossard, J. L. Dormann, L. Goldstein, P. Gibart, and P. Renaudin, Phys. Rev. B 20, 2933 (1979). https://doi.org/10.1103/PhysRevB.20.2933
  13. M. Eibschutz, S. Shtrikman, and Y. Tenenbaum, Phys. Lett. 24A, 563 (1967).
  14. G. R. Hoy and K.P. Singh, Phys. Rev. 172, 514 (1968). https://doi.org/10.1103/PhysRev.172.514
  15. C. S. Kim, D. Y. Kim, H. M. Ko, J. K. Kim, and J. Y. Park, J. Appl. Phys. 73, 6986 (1993). https://doi.org/10.1063/1.352406
  16. G. Haacke and A. J. Nozik, Solid State Commun. 6, 363 (1968). https://doi.org/10.1016/0038-1098(68)90157-9
  17. C. M. Yagnik and H. B. Mathur, Solid State Commun. 5, 841 (1967). https://doi.org/10.1016/0038-1098(67)90310-9
  18. 박민식, 윤석주, 민병일, 한국자기학회지 8, 111 (1998).
  19. 김삼진, 박승일, 김철성, 새물리 41, 385 (2000).
  20. Z. Klencsar, E. Kuzmann, Z. Homonnay, A. Vertes, A. Simopoulos, E. Devlin, and G. Kallias, J. Phys. Chem. Solids 64, 325 (2003). https://doi.org/10.1016/S0022-3697(02)00308-6
  21. O. Muller and R. Hoy, The Major Ternary Structural Families, Springer-Verlag, New York (1974).
  22. R. D. Shannon, Acta Crystallogr., Sect. A32, 751 (1976).