• Title/Summary/Keyword: Magnetic composite

Search Result 387, Processing Time 0.023 seconds

Electromagnetic Wave Absorption Properties of Fe73Si16B7Nb3Cu1-Based Nanocrystalline Soft Magnetic Powder Composite Mixed with Charcoal Powder (나노결정 Fe73Si16B7Nb3Cu1 연자성분말과 숯분말 혼합 복합성형체의 전자파흡수 특성)

  • Kim, Sun-I;Kim, Mi-Rae;Sohn, Keun-Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.291-295
    • /
    • 2009
  • The electromagnetic wave absorption sheets were fabricated by mixing of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz$\sim$10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz$\sim$1 GHz.

Measurement and Analysis of Conduction Noise through Microstrip Line Attached with Composite Sheets of Iron Particles and Rubber Matrix (마이크로스트립 전송선로를 이용한 순철 압분체-고무 복합재의 전도노이즈 흡수특성 측정 및 해석)

  • Kim, Sun-Tae;Oh, Byung-Ki;Kim, Sung-Soo;Cho, Han-Sin;Lee, Jae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.174-179
    • /
    • 2004
  • Attenuation of conduction noise through microstrip line attached with the high lossy iron flakes-rubber composites has been investigated in GHz frequencies. Microstrip line was designed with characteristic impedance of 50 $\Omega$ and a length corresponding to the center frequency of 3 GHz. Iron flakes were fabricated by mechanical forging of spherical iron powders using an attrition mill. The fabricated microstrip line shows a ideal propagation characteristics of S$\sub$11/ < -60 dB and S$\sub$21/ = 0 dB. Attaching a noise absorbing sheet on the microstrip line, S$\sub$11/ increases to about -10 dB and S$\sub$21/ decreases to -20~-60 dB depending on the length of absorbing sheet. The calculated power loss is as high as 80% in the frequency range 2~8 GHz. It is suggested that the most critical material parameter is magnetic loss for the enhancement of noise attenuation.

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

Analysis of the Encoder Composite Signal for a Absolute Position Detection of the Permanent Magnet Type Synchronous Motor (영구자석형 동기전동기의 절대 위치 검출을 위한 엔코더 복합 신호의 분석)

  • Kim, Jin-Ae;Joo, Jae-Hun;Jeong, Se-Young;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.180-184
    • /
    • 2007
  • For driving a sinusoidal type permanent magnet synchronous motor with a maximum continuous torque, a $120^0$ delayed three phase sinusoidal current input which matched with the absolute rotor position is needed at a stator coil. So, the detection of absolute rotor position is required inevitably. Thus the right angle relationship between stator magnetic field and rotor magnetic field has to be preserved at a stator by this commutation action. The detection of a absolute position for the commutation can be made generally by the output signal analysis of the encoder attached at a motor shaft. This study purposes to design signal processing logic circuits which can detect the absolute position of motor with a modem encoder system and generate the three reference wave for making sinusoidal current input at a stator coil.

  • PDF

Electromagnetic Interference Shielding of Carbon Fibers-Reinforced Composites (탄소섬유강화 복합재료의 전자파 차폐특성)

  • 심환보;서민강;박수진
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.860-868
    • /
    • 2000
  • In this work, the electro-magnetic interference (EMI) characteristics of PAN-based carbon fibers-reinforced composites are investigated with difference to manufactural parameters, i.e., fiber grade, fiber orientation angle, and laminating method. As a result, EMI shielding effectiveness (SE) of the composites greatly depends on a fiber orientation in composite angle. Especially, the fiber grade affects SE of composites in case of orientation angle of 0$^{\circ}$. Then the SE become greater as the change of electric character according to the arrangement directions, i.e., electrical anisotropy in the same constituent materials. This is due to the skin effect which is represented in the surface of electro-magnetic wave in high-frequency range. In all cases according to lamination methods, the composites represents SE of 83~98% over. Whereas, in symmetric and unsymmetric laminate structures, the SE decreases slightly as the laminate angles of composites increases. On the contrary. the repeating laminates structure shows the opposite tendency. Especially, 90$^{\circ}$ repeating laminate structure shows the SE more than 90% over the measuring frequency.

  • PDF

Magnetic Properties of $\alpha$-Fe Based Nd-Fe-B Nanocrystalline with High Remanence (고잔류자화 $\alpha$-Fe기 Nd-Fe-B 초미세결정립 합금의 자기특성)

  • 조용수;김윤배;박우식;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.38-41
    • /
    • 1995
  • The effects of Nb and Cu additives as will as substitutional Co into $Nd_{4}Fe_{85.5}B_{10.5}$ melt-spun alloy were studied aiming for finding a $\alpha$-Fe based Nd-Fe-B composite alloys with high energy product. The addition of Nb and Cu to $Nd_{4}Fe_{85.5}B_{10.5}$ decreased the average grain size and increased the coercivity up to 207kA/m(2.6kOe), Further-more, the substitution of Co for Fe in $Nd_{4}Fe_{82}B_{10}Nb_{3}Cu_{1}$ alloy resulted in the decrease of the average grain size (<20nm) and improved the hard magnetic properties. The remanence, coercivity and energy product of optimally annealed $Nd_{4}Fe_{74}Co_{8}B_{10}Nb_{3}Cu_{1}$ alloy were 1.345, 219kA/m(2.75kOe) and $95.5kJ/m^{3}$(12MGOe), respectively.

  • PDF

Magnetic exchange coupled NiFe/TbCo thin films for thin film magnetoresistive heads (박막 자기 저항 헤드용 자기교환 결합 NiFe/TbCo박막)

  • 오장근;조순철;안동훈
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.293-297
    • /
    • 1993
  • Exchange coupled $NiFe/TbCo/Sio_{2}$ thin films for magnetoresistive heads were sputter deposited using RF diode sputtering method, and their magnetic characteristics were measured. TbCo films were deposited using a composite target, which is composed of Tb chips epoxied on a Co target. NiFe($400\AA$)/TbCo($1500\AA$)/$SiO_{2}$($500\AA$) films were deposited using a TbCo target having 30 % of Tb area ratio, which showed 25 Oe of the exchange field without substrate bias and 12 Oe with -55 V of substrate bias. The effective in-plane coercivities of the three layer films fabricated with less than -55 V of substrate bias were approximately proportional to the perpendicular coercivities of the TbCo layer only. The films fabricated with a Theo target of 28 % area ratio showed the same trend. However, the exchange field decreased to 4 Oe without the substrate bias and 7 Oe with -55 V of substrate bias. In the films fabricated with 1000 W of power and the target of 36 % area ratio exhibited 100 Oe of exchange field and 3 Oe of coercivity. As the thickness of NiFe layer increased, the exchange field decreased.

  • PDF

Analysis of the Encoder Composite Signal for a Absolute Position Detection of the Synchronous Motor (동기 전동기의 절대 위치 검출을 위한 엔코더 복합 신호의 분석)

  • Joo, Jae-Hun;Kim, Dong-Hyun;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1018-1024
    • /
    • 2011
  • For the driving of the sinusoidal type permanent magnet synchronous motor with a maximum continuous torque, the 1200 delayed three phase sinusoidal current inputs which matched with the absolute rotor position are needed at the stator coil. Therefore, the detection of a absolute rotor position is required inevitably. And the right angle relationship between stator magnetic field and rotor magnetic field has to be preserved at a stator by this commutation action. The detection of a absolute position for the commutation can be made generally by the output signal analysis of the encoder attached at a motor shaft. The purposes of this study are to design signal processing logic circuits which could detect the absolute position of motor with a modern encoder system and generate the three reference wave for making sinusoidal current input at a stator coil.

Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application (하이퍼써미아 응용을 위한 하이브리드 에어로젤 내 분산된 마그네타이트 나노입자)

  • Lee, Eun-Hee;Choa, Yong-Ho;Kim, Chang-Yeoul
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.362-367
    • /
    • 2012
  • Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.

Development of Exchange-coupling Magnets Using Soft/hard Nanoparticles (나노 연/경자성 분말 재료를 이용한 Exchange-coupling 자석의 제조 기술)

  • Kim, Jong-Ryoul;Cho, Sang-Geun;Jeon, Kwang-Won
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.225-230
    • /
    • 2011
  • Magnetic materials has been applied to various fields due to their energy convertible properties between electrical and mechanical energy. Particularly, permanent magnets have been currently attracted much attention because they produce external magnetic field without any electrical current. For high efficiency, a demand for permanent magnets containing rare earth elements has been continuously increased, which abruptly raises the price and causes the supply difficulty of rare earth materials. Therefore, the development of permanent magnets with less or without rare earth elements become a urgent issue. In this report, the current trend and major issues on high efficiency permanent magnets, particularly exchange-coupling magnets, are discussed.