• Title/Summary/Keyword: Magnetic Analysis

Search Result 4,770, Processing Time 0.036 seconds

General Analytical Method for Magnetic Field Analysis of Halbach Magnet Arrays Based on Magnetic Scalar Potential

  • Jin, Ping;Yuan, Yue;Lin, Heyun;Fang, Shuhua;Ho, S.L.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.95-104
    • /
    • 2013
  • This paper presents a general analytical method for predicting the magnetic fields of different Halbach magnet arrays with or without back iron mounted on slotless permanent magnet (PM) linear machines. By using Fourier decomposition, the magnetization components of four typical Halbach magnet arrays are determined. By applying special synthetic boundary conditions on the PM surfaces, the expressions of their magnetic field distributions are derived based on the magnetic scalar potential (MSP), which are simpler than those based on the magnetic vector potential (MVP). The correctness of the method is validated by finite element analysis. The harmonics of airgap flux density waveforms of these Halbach magnet arrays with or without back iron are also compared and optimized.

Study on the Three Dimensional Magnetic Field Analysis of Superconducting Rotary Machine (초전도 회전기의 3차원 자계해석에 대한 연구)

  • 조영식;손명환;백승규;권영길;홍정표
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.501-506
    • /
    • 2003
  • A Superconducting Rotary Machine (SRM) is characterized by an air-cored machine with its rotor iron and stator iron teeth removed. For this reason, the SRM is featured by 3D magnetic flux distribution, which decreases in the direction of axis. Therefore, 3D magnetic field analysis method is required to know about characteristic of magnetic field distribution of SRM. In this paper, 3D flux distribution of SRM is calculated by analytical method. The magnetic field distribution of the field coils is calculated by Biot-Savart equation. The magnetic core is represented by magnetic surface polarities. This paper describes the combined use of above methods for the total field computation, and compares results of analytical method and 3D FEM(Finite Element Method).

Measurement and Analysis of Electromagnetic field for DC electric railway train (직류철도차량에 대한 자계측정 및 분석)

  • Jang, Dong-Uk;Kim, Min-Cheol;Lee, Chang-Mu;Han, Moon-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1637-1639
    • /
    • 2005
  • The measurement of magnetic field is performed about DC and AC magnetic field in test track of depot. The test point is cap, on the converter/inverter box, on the traction motor, on the APSE and on the line filter, the height of measurement is bottom and 50 cm height. In case of AC magnetic field, the selected specific frequency is measured on the converter/inverter box. The AC magnetic field is checked and analysis through RS-232C and notebook PC. The DC magnetic field is measured by using the Hall Probe, test result is saved and analysis by PXI system. On the line filter, the maximum value is 1.4 mT in case of DC magnetic field and 0.044 mT in case of AC magnetic field at 50 Hz.

  • PDF

Influence of Harmonic Modulator Shape on the Cogging Force of Magnetic Gear (고조파 조절기 형상이 자석 기어의 코깅 자기력에 미치는 영향 분석)

  • Kwangsuk, Jung
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2022
  • The reduction ratio of the magnetic gear is determined by the ratio of the number of poles between the high-speed permanent magnet layer and the low-speed permanent magnet layer. In general, it is known that the greater the least common multiple of both poles, the smaller the torque ripple called by cogging of the magnetic force generated in the magnetic gear. However, little is known about the effect of the harmonic modulator that filters the magnetic field in the magnetic gear to magnetically couple the high-speed side and the low-speed side except for the number of poles. In this study, torque ripple characteristics according to changes in modulator shape such as opening ratio and tooth thickness are analyzed using a finite element analysis tool.

Parametric Analysis and Experimental Testing of Radial Flux Type Synchronous Permanent Magnet Coupling Based on Analytical Torque Calculations

  • Kang, Han-Bit;Choi, Jang-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.926-931
    • /
    • 2014
  • This paper presents the torque calculation and parametric analysis of synchronous permanent magnet couplings (SPMCs). Based on a magnetic vector potential, we obtained the analytical magnetic field solutions produced by permanent magnets (PMs). Then, the analytical solutions for a magnetic torque were obtained. All analytical results were extensively validated with the non-linear a two-dimensional (2D) finite element analysis (FEA). In particular, test results such as torque measurements are presented that confirm the analysis. Finally, using the derived analytical magnetic torque solutions, we carried out a parametric analysis to determine the influence of the design parameters on the SPMC's behavior.

Torque Analysis of Magnetic Spur Gear with Radial Magnetized Permanent Magnets based on Analytical Method (해석적 방법을 이용한 반경방향 영구자석을 갖는 자기 스퍼 기어의 토크특성해석)

  • Min, Kyoung-Chul;Choi, Jang-Young;Sung, So-Young;Park, Jong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.545-551
    • /
    • 2015
  • This paper deals with torque analysis of magnetic spur gear with radial magnetized permanent magnets based on analytical method. The analysis is implemented in three parts: First, on the basis of magnetic vector potential and a two-dimensional (2D) polar-coordinate system, the magnetic field solution due to permanent magnet of source gear are obtained. And by using derived magnetic field solutions, the analytical solutions for external magnetic field distribution which affects load gear are obtained. Second, by using coordinate conversion, external magnetic field which is on the primary coordinate system is converted to the secondary coordinate system. Finally, the load gear is reduced to equivalent current densities, and the torque is computed on these currents in the external field of the source magnet. These analytical results are validated by comparing with the 2-D finite element analysis (FEA).

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field

  • Lee, Jeongwoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.

A Study on the Detecting Method for Underground Pipes Using Magnetic Field (자기장을 이용한 매설배관의 위치탐지에 관한 연구)

  • Bae, Bong-Kook;Yang, Yean-Soon;Song, Chun-Ho;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.32-37
    • /
    • 2001
  • As increasing underground facilities, more effective management is needed nowadays. It is important to get an accurate information of underground facilities to manage that, so some methods of detecting location - electromagnetic induction method, ground penetration radar method, sonic method - are used to obtain the information of underground facilities. In this study, a magnetic method to detect underground facilities was developed. In the magnetic method, underground facilities are detected by a detector and the magnetic marker which is a permanent magnet and used to marking the location by attaching underground facilities. A proper characteristic of the magnetic marker was optimized by maxwell 20 magnetic field analysis tool, a test field was constructed with the magnetic marker, PVC pipe, and steel pipe under ground 1.5m, and the detector was made by modifying a common ferromagnetic detector. Magnetic strengths of the magnetic marker were measured by the detector at each location in the test field, and analyzed by magnetic field analysis tool in the same condition. In the result, the underground pipes were detectable within the deviation ${\pm}20cm$ at PVC pipe and ${\pm}10cm$ at steel pipe respectively. The steel pipe was more detectable by ferromagnetism. The developed magnetic method can be applied to maintain and manage underground facilities.

  • PDF

Analysis and Design Actuator of Using Magnetostrictive Material (자기왜형 물질을 이용한 액츄에이터의 설계 및 특성해석)

  • Jang, S.M.;Cha, S.D.;Lim, C.U.;Jeong, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.751-753
    • /
    • 2001
  • The characteristic of magnetostrictive is to change shape in a magnetic field, TERFENOL-D is said to produce magnetostriction. A magneto strictive actuator need to the magnetic circuit. The most important design consideration is the magnetic circuit. The magnetic circuit consists of the solenoid coil, permanets for bias and shaping of the other parts through which the magnetic field passes. A good magnetic circuit ensures the proper magnetic field in th TERFENOL-D and very uniform magnetic field in all phases of the actuator operating cycle. This paper presents magnetic circuit design and analysis uesing FEM.

  • PDF

Analysis of an Electromagnetically Biased Combined Radial and Axial Magnetic Bearing (전자석 바이어스 반경방향-축방향 일체형 자기베어링 해석)

  • Na, Uhn-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1038-1045
    • /
    • 2010
  • The theory for a new electromagnetically biased combined radial and axial magnetic bearing is developed. This combined magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. One dimensional magnetic circuit model for this combined magnetic bearing is developed and analyzed such that flux densities and magnetic forces can be obtained. Three dimensional finite element model for the bearing is also developed and analyzed. Numerical analysis shows that the calculated magnetic forces from 1D model are well matched with those from the finite element model.