• Title/Summary/Keyword: Macrophage Cell

Search Result 1,333, Processing Time 0.028 seconds

AN HISTOPATHOLOGICAL STUDY ABOUT THE CHANGE OF SUBMANDIBULAR GLANDULAR CELL IN WHITE RAT FOLLOWING $HgCl_{2}$ INJECTION (승홍 투여가 백서 악하선 세포의 조직병리학적 변화에 미치는 영향에 관한 연구)

  • Kim, In-Su;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.413-420
    • /
    • 2002
  • Mercury is one of the most frequently used heavy metal in dental clinic. Mercury poisoning rises up when someone is exposed to mercury chronically. In 1818, Amalgam was used for dental restorative procedure, and after then study about mercury toxicity has begun. Clinical signs of mercury toxicity in oral & maxillofacial area were increases of salivation, metallic taste, swelling and pain of tongue, redness and ulceration of oral mucosa, and increased mobility and loss of teeth. After we injected mercury($HgCl_{2}$) into intraperitoneum of rat, studied about histopathological changes of submandibular gland cell. Experimental group was divided into two groups by amount of mercury. (Group 1 was 0.5mg/Kg of mercury injection, group 2 was 1.0mg/Kg of mercury injection.) 1. After 3days of intraperitoneal injection, black granules were observed at macrophage cell in both group. In group 2, author found hyperchromatism of nucleus, and vacuolization of cellular matrix and nucleus of acinar cell. 2. After 1week of intraperitoneal injection, author found severe vacuolization of nucleus and cellular matrix, and irregular granules around nuclear membrane at mucous cell and serous cell in both group. Vacuolization of nucleus and cellular matrix was seen at duct cell in group 2. 3. After 2weeks of intraperitoneal injection, author could found severe vacuolization of cellular matrix, and sometimes nucleus was positioned in central area of cellular matrix at mucous and serous cell in both group. Vacuolization of nucleus and cellular matrix was found at vascular endothelial cell in group 2. 4. After 4weeks of intraperitoneal injection, destruction and distortion of gland cells were distinct. Vacuolization and destruction of nucleus and cellular matrix was found at duct cell in group 2. After intraperitoneal injection of mercury, we found equanimity of mercury and destruction of cellular matrix at serous cell, mucous cell, and duct cell of submandibular gland. So, we thought that metallic taste of mercury poisoning patient would be due to excretion of saliva containing mercury.

Altered Expression of Peroxiredoxin and Thioredoxin in Septic Animal Model (패혈증 동물 모델에서 Peroxiredoxin 및 Thioredoxin의 발현 변화)

  • Kim, Hyung-Jung;Chae, Ho-Zoon;Ahn, Chul-Min;Kim, Sung-Kyu;Lee, Won-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.4
    • /
    • pp.451-459
    • /
    • 1999
  • Background : In sepsis, excessive generation of reactive oxygen species plays key roles in the pathogenesis of acute lung injury. The serum antioxidants such as catalase and MnSOD are elevated in sepsis and considered as predictors of acute respiratory distress syndrome(ARDS) and prognostic factors of sepsis. Peroxiredoxin(Prx) has recently been known as an unique and major intracellular antioxidant. In this study, we evaluated the expression of Prx I and Prx II in mouse monocyte-macrophage cells(RAW 267.7) after treatment of oxidative stress and endotoxin and measured the amount of Prx I, Prx II and thioredoxin(Trx) in peritoneal and bronchoalveolar lavage fluid of septic animal model. Methods : Using immunoblot analysis with specific antibodies against Prx I, Prx II and Trx, we evaluated the distribution of Prx I and Prx II in human neutrophil, alveolar macrophage and red blood cell. We evaluated the expression of Prx I and Prx II in mouse monocyte-macrophage cells after treatment of $5\;{\mu}M$ menadione and $1\;{\mu}g/ml$ lipopolysaccharide(LPS) and measured the amount of Prx I, Prx II and Trx in peritoneal lavage fluid of intraperitoneal septic animals(septic animal model induced with intraperitoneal 6 mg/Kg LPS injection) and those in bronchoalveolar lavage fluid of intraperitoneal septic animals and intravenous septic animals(septic animal model induced with intravenous 5 mg/Kg LPS injection) and compared with the severity of lung inflammation. Results : The distribution of Prx I and Prx II were so different among human neutrophil, alveolar macrophage and red blood cell. The expression of Prx I in mouse monocyte-macrophage cells was increased after treatment of $5\;{\mu}M$ menadione and $1\;{\mu}g/ml$ lipopolysaccharide but that of Prx II was not increased. The amount of Prx I, Prx II and Trx were increased in peritoneal lavage fluid of intraperitoneal septic animals but were not increased in bronchoalveolar lavage fluid of intraperitoneal and intravenous septic animals regardless of the severity of lung inflammation. Conclusion : As intracellular antioxidant, the expression of Prx I is increased in mouse monocyte-macrophage cells after treatment of oxidative stress and endotoxin. The amount of Prx I, Prx II and Trx are increased in local inflammatory site but not increased in injured lung of septic animal model.

  • PDF

Expression of Murine GM-CSF in Recombinant Aspergillus niger

  • Kim, Nyoung-Ji;Kwon, Tae-Ho;Jang, Yong-Suk;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.287-292
    • /
    • 2000
  • Recombinant Aspergillus niger was constructed to express and secrete a biologically active murine granulaocyte macrophage-colony stimulating factor (mGM-CSF). A 500 bp fragment encoding the signal peptide and terminator of glyceraldehyde-3-phosphate dehydrogenase (gpd). The hygromycin phosphotrasferase gene (hph) was used as a selection marker for the fungal transformants. An expression vector was introduced into A. niger ATCC 9642, and a Northern blot analysis indicated the presence of a considerable amount of transcripts from the introduced mGM-CSF. The biological activity of recombinant mGM-CSF (rmGM-CSF) isolated from the culture filtrate was confirmend by measuring the proliferationof the GM-CSF dependent FDC-P1 cell line. It appeared that rmGM-CSF was amenable to the proteolytic activity produced by A. niger, since biological actibity was only observed when the transformants were grown in a protease-repressing medium, and the activity of rmGM-CSF dramatically decreased with an increase of age of the culture. The yield of rmGM-CSF, as determined by ELISA. was 640 ng/l of culture filtrate. Accordingly, its specific activity is estimated to be approximately two-and-a-half times higher than that of a commercial preparation from E. coli.

  • PDF

Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway

  • Yoo, Sulgi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.449-456
    • /
    • 2017
  • Beauvericin (BEA), a cyclic hexadepsipeptide produced by the fungus Beauveria bassiana, is known to have anti-cancer, anti-inflammatory, and anti-microbial actions. However, how BEA suppresses macrophage-induced inflammatory responses has not been fully elucidated. In this study, we explored the anti-inflammatory properties of BEA and the underlying molecular mechanisms using lipopolysaccharide (LPS)-treated macrophage-like RAW264.7 cells. Levels of nitric oxide (NO), mRNA levels of transcription factors and the inflammatory genes inducible NO synthase (iNOS) and interleukin (IL)-1, and protein levels of activated intracellular signaling molecules were determined by Griess assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter gene assay, and immunoblotting analysis. BEA dose-dependently blocked the production of NO in LPS-treated RAW264.7 cells without inducing cell cytotoxicity. BEA also prevented LPS-triggered morphological changes. This compound significantly inhibited nuclear translocation of the $NF-{\kappa}B$ subunits p65 and p50. Luciferase reporter gene assays demonstrated that BEA suppresses MyD88-dependent NF-${\kappa}B$ activation. By analyzing upstream signaling events for $NF-{\kappa}B$ activation and overexpressing Src and Syk, these two enzymes were revealed to be targets of BEA. Together, these results suggest that BEA suppresses $NF-{\kappa}B$-dependent inflammatory responses by suppressing both Src and Syk.

Anti-inflammatory mechanism and Anti-oxidant Effects of Naesohwangryun-tang in LPS-Stimulated RAW 264.7 Macrophage Cells (LPS로 유도된 RAW 264.7 대식세포주에서 내소황련탕(內疎黃連湯)의 항염증 기전 및 항산화 효능 연구)

  • Jeon, Seon-Hong;Kim, Tae-Jun;Kim, Yong-Min
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.33 no.2
    • /
    • pp.100-111
    • /
    • 2020
  • Objectives : The aim of experiment is to examine anti-inflammatory effect and anti-oxidant effect of Naesohwangryun-tang (NSHRT) in LPS-stimulated RAW264.7 macrophage cells. Methods : In the present study, The cell viability was performed by MTT assay. Nitric oxide (NO) production and prostaglandin E2 (PGE2) synthesis were performed by NO assay and ELISA KIT. The anti-oxidant effect was performed by DPPH and ABTS radical scavenging activity. The inhibitory effects of pro-inflammatory mediators and cytokines were confirmed by realtime PCR and western blotting. Results : NSHRT was no cytotoxicity at treated group. NO and PGE2 production were inhibited compared to the LPS treated group and also mRNA and protein expressions were significantly decreased compared to the LPS treated group. Conclusions : According to the above experiments, we confirmed that NSHRT has anti-inflammatory and anti-oxidant effects. It is suggested that NSHRT is potential ingredient of skin diseases.

Enhancing Effect of Zingiber Officinale Roscoe Extracts on Mouse Spleen and Macrophage Cells Activation (생강추출물 투여에 의한 마우스 비장세포 및 대식세포 활성 효과)

  • Ryu Hye Sook;Kim Jin;Park Sang Chul;Kim Hun Sook
    • Journal of Nutrition and Health
    • /
    • v.37 no.9
    • /
    • pp.780-785
    • /
    • 2004
  • Recently many investigators have initiated searches for immunomodulating substances from natural food sources. Ginger (Zingiber officinale Roscoe) has been used as a raw material in many traditional preparations since the ancient time. This study was performed to investigate the immunomodulative effects of Zingiber officinale Roscoe in mice, using ex vivo experiments. In order to elucidate the immunomodulative effects of Ginger, water extracts of the plant were orally administrated into mice, and isolated splenocytes and macrophages were used as experimental model. In order to identify its ex vivo effect six to seven week old Balb/c mice were fed ad libitum on a chow diet and water extracts of ginger were orally administrated every other day for two weeks at two different concentrations (50 and 500 mg/kg b.w.). After preparing the single cell suspension, the proliferation of splenocytes was determined by MTT assay. The result of ex vivo study showed that the highest proliferation of splenocytes and macrophage activatation was seen in the mice orally administrated at the concentration of 500 mg/kg b. w. of ginger water extracts. In conclusion, this study suggests that ginger extracts nay enhance the immune function by regulating the splenocyte proliferation and cytokine prodution capacity by activated macrophages in mice.

Expression of Chemokine and Tumor Necrosis Factor Alpha Genes in Murine Peritoneal Macrophages Infected with Orientia tsutsugamushi

  • Koh, Young-Sang
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.186-194
    • /
    • 2001
  • Scrub typhus, caused by Orientia tsutsugamushi infection, is clinically and histopathologically characterized by local as well as systemic inflammatory reactions, indicating that orientiae induce mechanisms that amplify the inflammatory response. To reveal underlying mechanisms of chemoattraction and activation of responding leukocytes, expression of chemokine and tumor necrosis factor alpha (TNF-$\alpha$) genes in murine peritoneal macrophages after infection with the obligate intracellular bacterium Ο.tsutsugamushi was investigated. The genes that were unregulated included macrophage inflammatory proteins l$\alpha$/$\beta$(MIP-l$\alpha$/$\beta$), MIP-2, monocyte chemoattractant protein 1(MCP-1), RANTES (regulated upon activation, normal T-cell expressed and secreted), gamma-interferon-inducible protein 10(IP-10) and TNF-$\alpha$. Peak expression of these chemokines and TNF-$\alpha$ was observed between 1 and 3 h after infection. These responses returned to or approached baseline preinfection levels 6 h after challenge. Semiquantitative reverse transcription (RT)-PCR analysis revealed dramatic Increases during infection in the steady-state levels of mRNA ceding for the inhibitory subunit of NF-kB (IkB$\alpha$), whose transcription is enhanced by binding of NF-kB within the IkB$\alpha$promoter region. Thus, Ο. tsutsugamushi appears to be a stung inducer of chemokines and TNF-$\alpha$ which may significantly contribute to inflammation and tissue damage observed in scrub typhus by attracting and activating phagocytic leukocytes.

  • PDF

Inhibitory effects of Coptidis Rhizoma on the LPS-induced production of nitric oxide and $TNF-{\alpha}$ in mouse macrophage cells (황련의 쥐 대식세포로부터 LPS에 의해 유도되는 nitric oxide 및 $TNF-{\alpha}$의 생성억제효과)

  • Jung, Hyo-Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.165-173
    • /
    • 2006
  • Objectives : Coptidis Rhizoma has been known traditional medicine with antimicrobial activities. We investigated inhibitory effects of Coptidis Rhizoma extract on lipopolysaccharide(LPS)-induced nitric oxide production from mouse macrophages. Methods : After Coptidis Rhizoma extract was pretreated in BV2, mouse brain macrophages and RAW264.7 mouse macrophages, cells were activated with LPS. To investigate cytotoxicity Coptidis Rhizoma extract, cell viability was measured by MTT assay. The production of nitric oxide(NO) and inducible nitric oxide synthase(iNOS) was determined in each culture supernatant and mRNA by Griess reaction and RT-PCR. The production of $TNF-{\alpha}$ from cells was measured by ELISA. Results : Coptidis Rhizoma extract significantly inhibited LPS-induced NO production in BV2 and RAW264.7 cells. Coptidis Rhizoma extract also greatly suppressed mRNA expression of iNOS in BV2 and RAW264.7 cells activated by LPS. Conclusion : These data suggests that Coptidis Rhizoma extract may have an anti-inflammatory effect through the inhibition of NO production.

  • PDF

The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages

  • Kim, Yong Chan;Song, Seok Bean;Lee, Sang Kyu;Park, Sang Min;Kim, Young Sang
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • Macrophage death plays a role in several physiological and inflammatory pathologies such as sepsis and arthritis. In our previous work, we showed that simvastatin triggers cell death in LPS-activated RAW 264.7 mouse macrophage cells through both caspase-dependent and independent apoptotic pathways. Here, we show that the nuclear orphan receptor NR4A1 is involved in a caspase-independent apoptotic process induced by LPS and simvastatin. Simvastatin-induced NR4A1 expression in RAW 264.7 macrophages and ectopic expression of a dominant-negative mutant form of NR4A1 effectively suppressed both DNA fragmentation and the disruption of mitochondrial membrane potential (MMP) during LPS- and simvastatin-induced apoptosis. Furthermore, apoptosis was accompanied by Bcl-2-associated X protein (Bax) translocation to the mitochondria. Our findings suggest that NR4A1 expression and mitochondrial translocation of Bax are related to simvastatin-induced apoptosis in LPS-activated RAW 264.7 macrophages.

Mode of Action of Coptidis Rhizoma Protein (CRP) and Its Activity Against Subcutaneous Candidiasis due to Candida albicans (황련단백질의 항캔디다 작용기전 및 항피부캔디다증 효과)

  • Lee, Jue-Hee;Shim, Jin Kie;Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.49 no.5
    • /
    • pp.422-427
    • /
    • 2005
  • Our previous data showed the protein isolated from Coptidis Rhizoma (CRP) had antifungal activity. In present study, we examined mode of action of the CRP and its activity against subcutaneous candidiasis due to C. albicans yeast cells. Results showed that the CRP blocked hyphal production from yeast form of C. albicans. The CRP also activated RAW 264.7 monocyte/macrophage cell line, which resulted in nitiric oxide (NO) production from the cells. This activation seemed to increase macrophage phagocytosis to destroy the invaders. Like other antimicrobial peptides, CRP was influenced by ionic strength, thus resulting in a decrease of antifungal activity. In murine model of a subcutaneous candidiasis, the sizes of infected areas of the nude mice given the CRP after subcutaneous injection of C. albicans yeast cells to the dorsal skin were $90\%$ less than those of the nude mice groups that received DPBS instead of the CRP. All data indicate that the CRP, which appeared to act like an antimicrobial peptide and to inhibit the morphological transition from blastoconidia, was effec­tive against the subcutaneous disease.