Mode of Action of Coptidis Rhizoma Protein (CRP) and Its Activity Against Subcutaneous Candidiasis due to Candida albicans

황련단백질의 항캔디다 작용기전 및 항피부캔디다증 효과

  • 이주희 (동덕여자대학교 약학대학 면역 미생물학교실) ;
  • 심진기 (한국생산기술연구원) ;
  • 한용문 (동덕여자대학교 약학대학 면역 미생물학교실)
  • Published : 2005.10.01

Abstract

Our previous data showed the protein isolated from Coptidis Rhizoma (CRP) had antifungal activity. In present study, we examined mode of action of the CRP and its activity against subcutaneous candidiasis due to C. albicans yeast cells. Results showed that the CRP blocked hyphal production from yeast form of C. albicans. The CRP also activated RAW 264.7 monocyte/macrophage cell line, which resulted in nitiric oxide (NO) production from the cells. This activation seemed to increase macrophage phagocytosis to destroy the invaders. Like other antimicrobial peptides, CRP was influenced by ionic strength, thus resulting in a decrease of antifungal activity. In murine model of a subcutaneous candidiasis, the sizes of infected areas of the nude mice given the CRP after subcutaneous injection of C. albicans yeast cells to the dorsal skin were $90\%$ less than those of the nude mice groups that received DPBS instead of the CRP. All data indicate that the CRP, which appeared to act like an antimicrobial peptide and to inhibit the morphological transition from blastoconidia, was effec­tive against the subcutaneous disease.

Keywords

References

  1. Wisplinghoff, H., Bischoff, T., Tallent, S. M., Seifert, H., Wenzel, R. P. and Edmond, M. B. : Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide survelliance study. Clin. Infect. Dis. 39(3), 309 (2004) https://doi.org/10.1086/421946
  2. Perfect, J. R. and Schell, W. A. : The new fungal opportunists are coming. Clin. Infect. Dis. 22(Suppl. 2), S112 (1996) https://doi.org/10.1093/clinids/22.Supplement_2.S112
  3. Villar, C. C., Kashleva, H. and Dongari-Bagtzoglou, A. : Role of Candida albicans polymorphism in interactions with oral epithelial cells. Oral Microbiol. Immunol. 19(4), 262 (2004) https://doi.org/10.1111/j.1399-302X.2004.00150.x
  4. Vazquez-Torres, A. and Balish, E. : Macrophages in resistance to candidiasis. Microbiol. Mol. BioI. Rev. 61(2), 170 (1997)
  5. Ashman, R. B. and Papadimitriou, J. M. : What's new in the mechanisms of host resistance to Candida albicans infection? Pathol. Res. Pract. 186(4), 527 (1990) https://doi.org/10.1016/S0344-0338(11)80477-2
  6. Leberer, E., Ziegelbaue,r K., Schmidt, A., Harcus, D., Dignard, D., Ash, J., Johnson, L. and Thomas, D. Y. : Curr. Biol. 7(8), 539 (1997) https://doi.org/10.1016/S0960-9822(06)00252-1
  7. Phan, Q. T., Belanger, P. H. and Filler, S. G. : Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect. Immun. 68(6), 3485 (2000) https://doi.org/10.1128/IAI.68.6.3485-3490.2000
  8. Kamai, Y., Maebashi, K., Kudoh, M., Makimura, K., Naka, W., Uchida, K. and Yamaguchi, H. : Characterization of mechanisms of fluconazole resistance in a Candida albicans isolate from a Japanese patient with chronic mucocutaneous candidiasis. Microbiol. Immunol. 48(12), 937 (2004) https://doi.org/10.1111/j.1348-0421.2004.tb03623.x
  9. Kim, H., Lee, J. H., Shim, J. K. and Han, Y. : Anticandidal activity of the protein substance from Coptidis Rhizoma. Yakhak Hoeji 49(4), 323 (2005)
  10. Zasloff, M. : Antimicrobial peptides of multicellular organisms. Nature 415(6870), 389 (2002) https://doi.org/10.1038/415389a
  11. Lee, D. G., Park, Y., Kim, H. N., Kim, H. K., Kim, P. I., Choi, B. H. and Hahm, K. S. : Antifungal mechanism of an antimicrobial peptide, HP (2--20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Biochem. Biophys. Res. Commun. 291(4), 1006 (2002) https://doi.org/10.1006/bbrc.2002.6548
  12. Fleury, Y., Dayem, M. A., Montagne, J. J., Chaboisseau, E., Le Caer, J. P., Nicolas, P. and Delfour, A. : Covalent structure, synthesis, and structure-function studies of mesentericin Y 105(37), a defensive peptide from gram-positive bacteria Leuconostoc mesenteroides. J. BioI. Chem. 271(24), 14421 (1996) https://doi.org/10.1074/jbc.271.24.14421
  13. Brogden, K. A. : Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3(3), 238 (2005) https://doi.org/10.1038/nrmicro1079
  14. Broekaert, W. F., Terras, F. R., Cammue, B. P. and Osborn, R. W. : Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108(4), 1353 (1995) https://doi.org/10.1104/pp.108.4.1353
  15. Han, Y. and Lee, J. H. : Berberine synergy with amphotericin B against disseminated candidiasis in mice. BioI. Pharm. Bull. 28(3), 541 (2005) https://doi.org/10.1248/bpb.28.541
  16. Han, Y. : Berberine synergy with amphotericin B against growth of Candida albicans. Dongduk Pharm. Res. 6(6), 49 (2002)
  17. Jutila, M. A., Kroese, F. G. M., Julita, K. L., et al. : Ly-6C is a monocyte/macrophage and endothelial cell differentiation antigen regulated by interferon-gamma. Eur. J. Immunol. 18, 1819 (1998) https://doi.org/10.1002/eji.1830181125
  18. Fleming, T. J., Fleming, M. L. and Malek, T. R. : Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 Mab to granulocyte-differentiation antigen (Gr-1)detects members of the Ly-6 family. J. Immunol. 151, 2399 (1993)
  19. Jutila, M. A., Kishimoto, T. K. and Finken, M. : Low-dose chymotrypsin treatment inhibits neutriohil migration into sites of inflammation in vivo : effects on Mac-l and MEL-14 adhesion protein expression and function. Cell Immunol. 132, 201 (1991) https://doi.org/10.1016/0008-8749(91)90019-8
  20. Czuprynski, C. J., Brown, J. F., Maroushek, N., Wagner, R. D. and Steinberg, H. : Administration of anti-granulocyte mAb RB6-8C5 impairs the resistance of mice to Listeria monocytogenes infection. J. Immunol. 152, 1836 (1994)
  21. Pekarek, L. A., Starr, B. A., Toledano, A. Y. and Schreiber, H. : Inhibition of tumor growth by elimination of granulocytes. J. Exp. Med. 181, 435 (1995) https://doi.org/10.1084/jem.181.1.435
  22. Han, Y. and Cutler, J. E. : Assessment of a mouse model of neutropenia and the effect of an anti-candidiasis monoclonal antibody in these animals. J. Infect. Dis. 175(5), 1169 (1997) https://doi.org/10.1086/516455
  23. Han, Y : Ginkgo terpene component has an anti-inflammatory effect on Candida albicans-caused arthritic inflammation. Int. Immunopharmacol. 5(6), 1049 (2005) https://doi.org/10.1016/j.intimp.2005.02.002
  24. Han, Y., Jin, B. S., Ko, S. K. and Lee, J. H. : Immunoactivity of ginsenosides Re and Rg1 that enhances resistance of mice against experimental diseminated candidiasis. Natural Product Sciences 10(3), 134 (2004)