• Title/Summary/Keyword: Macrophage Cell

Search Result 1,332, Processing Time 0.026 seconds

Suppressed Production of Pro-inflammatory Cytokines by LPS-Activated Macrophages after Treatment with Toxoplasma gondii Lysate

  • Lee, Eun-Jung;Heo, Yoo-Mi;Choi, Jong-Hak;Song, Hyun-Ouk;Ryu, Jae-Sook;Ahn, Myoung-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.3
    • /
    • pp.145-151
    • /
    • 2008
  • During Toxoplasma gondii infection, macrophages, dendritic cells, and neutrophils are important sources of pro-inflammatory cytokines from the host. To counteract the pro-inflammatory activities, T. gondii is known to have several mechanisms inducing down-regulation of the host immunity. In the present study, we analyzed the production of pro- and anti-inflammatory cytokines from a human myelomonocytic cell line, THP-1 cells, in response to treatment with T. gondii lysate or lipopolysaccharide (LPS). Treatment of THP-1 cells with LPS induced production of IL-12, TNF-$\alpha$, IL-8, and IL-10. Co-treatment of THP-1 cells with T. gondii lysate inhibited the LPS-induced IL-12, IL-8 and TNF-$\alpha$ expression, but increased the level of IL-10 synergistically. IL-12 and IL-10 production was down-regulated by anti-human toll-like receptor (TLR)-2 and TLR4 antibodies. T. gondii lysate triggered nuclear factor (NF)-${\kappa}B$-dependent IL-8 expression in HEK293 cells transfected with TLR2. It is suggested that immunosuppression induced by T. gondii lysate treatment might occur via TLR2-mediated NF-${\kappa}B$ activation.

LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

  • Lee, Eun-Ju;Park, Kwan-Sik;Jeon, In-Sook;Cho, Jae-Woon;Lee, Sang-Jeon;Choy, Hyun E.;Song, Ki-Duk;Lee, Hak-Kyo;Choi, Joong-Kook
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.566-572
    • /
    • 2016
  • Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella- induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.

Effect of Chamomile Flower Extract on Septic Arthritis due to Candida albicans (카모마일 꽃 추출물의 Candida albicans 기인성 감염성 관절염에 대한 효과)

  • Kim, Jeonghyeon;Kim, Songyi;Hong, Yuna;Kim, Yeong Shik;Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.58 no.5
    • /
    • pp.343-348
    • /
    • 2014
  • In the present studies, we examined effect of chamomile flowers extract (CH-Ex), which has traditionally been used as antiphlogistics in Europe for many centuries, against Candida albicans-caused septic arthritis. Candida albicans is a major etiological agent among fungal septic arthritis. This effect was investigated in a murine model of the septic arthritis. That is, mice that were given an emulsion form of C. albicans cell wall (CACW) via footpad route were treated intraperitoneally with the CH-Ex for 3 times every 3 days. Degrees of the footpad-swellings were measured with dial gauger. Data showed that the CH-Ex resulted in the reduction of swelling. For instance, at Day 9 when swelling reached the highest peak, there was up to app. 60% reduction of edema in mice injected with the CH-Ex, compared to that of the control mice that received no treatment (P<0.05). This therapeutic anti-arthritic activity appeared to be mediated by inhibitions of NO (nitric oxide) production from activated RAW264.7 macrophages and proliferation of Con A-treated T lymphocytes. Analysis by HPLC revealed that the CH-Ex contained eight polyphenolic compounds including chlorogenic acid (CRA) and rutin. We have reported the CRA and rutin respectively have the anti-arthritic activity. This correlation implicates that CRA and rutin in the CH-Ex may be responsible for the activity. Combined all together, the CH-Ex has anti-arthritic activity against C. albicans-caused septic arthritis, possibly by inhibiting NO production and proliferation of T cells. This activity seems to be contributed by, at least, CRA and rutin among the compounds in the CH-Ex.

Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption

  • Jang, Jin Sun;Kang, In Soon;Cha, Young-Nam;Lee, Zang Hee;Dinauer, Mary C;Kim, Young-June;Kim, Chaekyun
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.659-664
    • /
    • 2019
  • Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient ($Vav1^{-/-}$) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of $Vav1^{-/-}$ mice than in WT mice. Furthermore, the bone status of $Vav1^{-/-}$ mice was analyzed in situ and the femurs of $Vav1^{-/-}$ mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an ${\alpha}_v{\beta}_3$ integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption.

Anti-Inflammatory Effect of the Extracts from Leaves and Stems of Thymus quinquecistatus var. japonica (H.Hara) (섬백리향 잎과 줄기 추출물의 항염 활성에 관한 세포생물학적 연구)

  • Lee, Sun-Mi;Baek, Jeong-In
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.125-133
    • /
    • 2021
  • Objectives : Thymus quinquecistatus var. japonica (H.Hara) is a member of the genus Thymus of perennial aromatic herb, and it's designated as a natural monument of South Korea. It has traditionally been known to have protective or therapeutic effects on various human disease including cerebrovascular and neurological disease. Recently it was suggested that essential oil extracted from thyme has anti-fungal and anti-bacterial effect. The aim of this study is to investigate anti-inflammatory effect of Thymus quinquecistatus var. japonica in Raw 264.7 macrophage cell line. Methods : The cytotoxic effects of water and 70% ethanol extracts from Thymus quinquecistatus var. japonica, was tested using MTT assay. Inhibitory effects of the extracts to nitric oxide production and mRNA expression of inflammatory cytokines were examined by RT-PCR. Also, MitoSOX-red assay and JC-1 assay were performed to determine if the extracts can inhibit mitochondrial ROS accumulation and maintain mitochondrial membrane potential. Results : In LPS-induced inflammatory response, the extracts efficiently reduced nitric oxide NO production through inhibiting mRNA expression of iNOS enzyme. In addition, expression of the proinflammatory cytokines, IL-1𝛽 and IL-6, was also down-regulated by the extract treatments. Excessive accumulation of mitochondrial ROS induced by LPS was inhibited in the extract treated cells, which finally protected mitochondrial membrane potential. Conclusions : These results showed that water and 70% ethanol extracts from Thymus quinquecistatus var. japonica have anti-inflammatory effect through down regulation of IL-1𝛽, IL-6, and iNOS, and also have antioxidative effect against mitochondrial ROS accumulation that promote inflammatory response.

Acute Toxicity Study of the 2-butoxyethanol by Intratracheal Instillation in Male Sprague-Dawley Rats (수컷 랫드(Sprague-Dawley)에서 2-부톡시에탄올(2-butoxyethanol)의 단회 기도내 투여에 따른 급성 독성시험)

  • Kim, Hyeon-Young;Kim, In-Hyeon;Kim, Min-Seok;Kim, Sung-Hwan;Lee, Kyuhong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.473-483
    • /
    • 2021
  • Objectives: The present study aimed to evaluate the potential toxicity of 2-butoxyethanol after intratracheal instillation in male rats. Methods: In order to calculate median lethal dose (LD50) of 2-butoxyethanol using Probit analysis with SAS program, the 2-butoxyethanol was administered with dose levels of 0, 101.64, 203.28 and 406.56 mg/kg by once intratracheal instillation to male rats. During the test period, clinical signs, mortality, body weights, organ weights, hematology, and serum biochemistry were examined. At the end of 14 days observation period, all animals were sacrificed and gross finding and histopathological examination were performed. Results: All animals of 406.56 mg/kg group died within 2 weeks after the administration of 2-butoxyethanol. Treatment-related clinical signs, gross observation and histopathological changes (mucous cell hyperplasia, alveolar macrophage aggregation, and hemorrhage) of lung exhibited an increased in 2-butoxyethanol treated groups in a dose dependent manner. However, there were no changes in the organ weights, hematology and serum biochemistry, and histopathology of any other organ except lung. Conclusions: On the basis of the results, it was concluded that a single intratracheal instillation of 2-butoxyethanol in male Sprague-Dawley rats resulted in some adverse effects on mortality, clinical sign, and histopathology in the lung. In the experimental conditions, the LD50 of 2-butoxyethanol was considered to be 287.2 mg/kg and lung was founded to be the target organ of 2-butoxyethanol.

OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages

  • Lee, Wook-Bin;Choi, Won Young;Lee, Dong-Hyun;Shim, Hyeran;KimHa, Jeongsil;Kim, Young-Joon
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.133-138
    • /
    • 2019
  • Upon viral infection, the 2', 5'-oligoadenylate synthetase (OAS)-ribonuclease L (RNaseL) system works to cleave viral RNA, thereby blocking viral replication. However, it is unclear whether OAS proteins have a role in regulating gene expression. Here, we show that OAS1 and OAS3 act as negative regulators of the expression of chemokines and interferon-responsive genes in human macrophages. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) technology was used to engineer human myeloid cell lines in which the OAS1 or OAS3 gene was deleted. Neither OAS1 nor OAS3 was exclusively responsible for the degradation of rRNA in macrophages stimulated with poly(I:C), a synthetic surrogate for viral double-stranded (ds)RNA. An mRNA sequencing analysis revealed that genes related to type I interferon signaling and chemokine activity were increased in $OAS1^{-/-}$ and $OAS3^{-/-}$ macrophages treated with intracellular poly(I:C). Indeed, retinoic-acid-inducible gene (RIG)-I- and interferon-induced helicase C domain-containing protein (IFIH1 or MDA5)-mediated induction of chemokines and interferon-stimulated genes was regulated by OAS3, but Toll-like receptor 3 (TLR3)- and TLR4-mediated induction of those genes was modulated by OAS1 in macrophages. However, stimulation of these cells with type I interferons had no effect on OAS1- or OAS3-mediated chemokine secretion. These data suggest that OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages.

Combined effect of recombinant human bone morphogenetic protein-2 and low level laser irradiation on bisphosphonate-treated osteoblasts

  • Jeong, Seok-Young;Hong, Ji-Un;Song, Jae Min;Kim, In Ryoung;Park, Bong Soo;Kim, Chul Hoon;Shin, Sang Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.6
    • /
    • pp.259-268
    • /
    • 2018
  • Objectives: The purpose of this study was to evaluate the synergic effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) and low-level laser therapy (LLLT) on bisphosphonate-treated osteoblasts. Materials and Methods: Human fetal osteoblast cells (hFOB 1.19) were cultured with $100{\mu}M$ alendronate. Low-level Ga-Al-As laser alone or with 100 ng/mL rhBMP-2 was then applied. Cell viability was measured with MTT assay. The expression levels of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoprotegerin (OPG) were analyzed for osteoblastic activity inducing osteoclastic activity. Collagen type and transforming growth factor beta-1 were also evaluated for bone matrix formation. Results: The results showed that rhBMP-2 and LLLT had a synergic effect on alendronate-treated osteoblasts for enhancing osteoblastic activity and bone matrix formation. Between rhBMP-2 and LLLT, rhBMP-2 exhibited a greater effect, but did not show a significant difference. Conclusion: rhBMP-2 and LLLT have synergic effects on bisphosphonate-treated osteoblasts through enhancement of osteoblastic activity and bone formation activity.

Cinnamomum camphora Leaves Alleviate Allergic Skin Inflammatory Responses In Vitro and In Vivo

  • Kang, Na-Jin;Han, Sang-Chul;Yoon, Seok-Hyun;Sim, Jae-Yeop;Maeng, Young Hee;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.279-285
    • /
    • 2019
  • In this study, we investigated the therapeutic potential of Cinnamomum camphora leaves on allergic skin inflammation such as atopic dermatitis. We evaluated the effects of C. camphora leaves on human adult low-calcium high-temperature keratinocytes and atopic dermatitis mice. C. camphora leaves inhibited Macrophage-derived chemokine (an inflammatory chemokine) production in $interferon-{\gamma}$ (10 ng/mL) stimulated Human adult low-calcium high-temperature keratinocytes in a dose dependent manner. C. camphora leaves suppressed the phosphorylation of janus kinase signal transducer and activator of transcription 1. C. camphora leaves also suppressed the phosphorylation of extracellular signal-regulated kinase 1/2, a central signaling molecule in the inflammation process. These results suggest that C. camphora leaves exhibits anti-inflammatory effect via the phosphorylation of signal transducer and activator of transcription 1 and extracellular signal-regulated kinase 1/2. To study the advanced effects of C. camphora leaves on atopic dermatitis, we induced experimental atopic dermatitis in mice by applying 2,4-dinitrochlorobenzene. The group treated with C. camphora leaves (100 mg/kg) showed remarkable improvement of atopic dermatitis symptoms: reduced serum immunoglobulin E levels, smaller lymph nodes with reduced thickness and length, decreased ear edema, and reduced levels of inflammatory cell infiltration in the ears. Interestingly, the effects of C. camphora leaves on atopic dermatitis symptoms were stronger than those of hydrocort cream, a positive control. Taken together, C. camphora leaves showed alleviating effects on the inflammatory chemokine production in vitro and atopic dermatitis symptoms in vivo. These results suggest that C. camphora leaves help in the treatment of allergic inflammation such as atopic dermatitis.

An alpha-lipoic acid-decursinol hybrid compound attenuates lipopolysaccharide-mediated inflammation in BV2 and RAW264.7 cells

  • Kwon, Mi-Youn;Park, Jiwon;Kim, Sang-Min;Lee, Jooweon;Cho, Hyeongjin;Park, Jeong-Ho;Han, Inn-Oc
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.508-513
    • /
    • 2019
  • In this study, the anti-inflammatory effects of ${\alpha}-lipoic$ acid (LA) and decursinol (Dec) hybrid compound LA-Dec were evaluated and compared with its prodrugs, LA and Dec. LA-Dec dose-dependently inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) generation in BV2 mouse microglial cells. On the other hand, no or mild inhibitory effect was shown by the Dec and LA, respectively. LA-Dec demonstrated dose-dependent protection from activation-induced cell death in BV2 cells. LA-Dec, but not LA or Dec individually, inhibited LPS-induced increased expressions of induced NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in a dose-dependent manner in both BV2 and mouse macrophage, RAW264.7 cells. Furthermore, LA-Dec inhibited LPS-induced expressions of iNOS, COX-2, interleukin-6, tumor necrosis $factor-{\alpha}$, and $interleukin-1{\beta}$ mRNA in BV2 cells, whereas the same concentration of LA or Dec was ineffective. Signaling studies demonstrated that LA-Dec inhibited LPS-activated signal transducer and activator of transcription 3 and protein kinase B activation, but not nuclear factor-kappa B or mitogen-activated protein kinase signaling. The data implicate LA-Dec hybrid compound as a potential therapeutic agent for inflammatory diseases of the peripheral and central nervous systems.