DOI QR코드

DOI QR Code

Cinnamomum camphora Leaves Alleviate Allergic Skin Inflammatory Responses In Vitro and In Vivo

  • Kang, Na-Jin (Department of Medicine, School of Medicine, Jeju National University) ;
  • Han, Sang-Chul (Department of Medicine, School of Medicine, Jeju National University) ;
  • Yoon, Seok-Hyun (Department of Medicine, School of Medicine, Jeju National University) ;
  • Sim, Jae-Yeop (Department of Medicine, School of Medicine, Jeju National University) ;
  • Maeng, Young Hee (Department of Medicine, School of Medicine, Jeju National University) ;
  • Kang, Hee-Kyoung (Department of Medicine, School of Medicine, Jeju National University) ;
  • Yoo, Eun-Sook (Department of Medicine, School of Medicine, Jeju National University)
  • Received : 2018.11.05
  • Accepted : 2019.01.16
  • Published : 2019.07.15

Abstract

In this study, we investigated the therapeutic potential of Cinnamomum camphora leaves on allergic skin inflammation such as atopic dermatitis. We evaluated the effects of C. camphora leaves on human adult low-calcium high-temperature keratinocytes and atopic dermatitis mice. C. camphora leaves inhibited Macrophage-derived chemokine (an inflammatory chemokine) production in $interferon-{\gamma}$ (10 ng/mL) stimulated Human adult low-calcium high-temperature keratinocytes in a dose dependent manner. C. camphora leaves suppressed the phosphorylation of janus kinase signal transducer and activator of transcription 1. C. camphora leaves also suppressed the phosphorylation of extracellular signal-regulated kinase 1/2, a central signaling molecule in the inflammation process. These results suggest that C. camphora leaves exhibits anti-inflammatory effect via the phosphorylation of signal transducer and activator of transcription 1 and extracellular signal-regulated kinase 1/2. To study the advanced effects of C. camphora leaves on atopic dermatitis, we induced experimental atopic dermatitis in mice by applying 2,4-dinitrochlorobenzene. The group treated with C. camphora leaves (100 mg/kg) showed remarkable improvement of atopic dermatitis symptoms: reduced serum immunoglobulin E levels, smaller lymph nodes with reduced thickness and length, decreased ear edema, and reduced levels of inflammatory cell infiltration in the ears. Interestingly, the effects of C. camphora leaves on atopic dermatitis symptoms were stronger than those of hydrocort cream, a positive control. Taken together, C. camphora leaves showed alleviating effects on the inflammatory chemokine production in vitro and atopic dermatitis symptoms in vivo. These results suggest that C. camphora leaves help in the treatment of allergic inflammation such as atopic dermatitis.

Keywords

References

  1. Leung, D.Y., Boguniewicz, M., Howell, M.D., Nomura, I. and Hamid, Q.A. (2004) New insights into atopic dermatitis. J. Clin. Invest., 113, 651-657. https://doi.org/10.1172/JCI21060
  2. Li, C., Lasse, S., Lee, P., Nakasaki, M., Chen, S.-W., Yamasaki, K., Gallo, R.L. and Jamora, C. (2010) Development of atopic dermatitis-like skin disease from the chronic loss of epidermal caspase-8. Proc. Natl. Acad. Sci. U.S.A., 107, 22249-22254. https://doi.org/10.1073/pnas.1009751108
  3. Nystad, W., Roysamb, E., Magnus, P., Tambs, K. and Harris, J.R. (2005) A comparison of genetic and environmental variance structures for asthma, hay fever and eczema with symptoms of the same diseases: a study of Norwegian twins. Int. J. Epidemiol., 34, 1302-1309. https://doi.org/10.1093/ije/dyi061
  4. Levin, T.A., Ownby, D.R., Smith, P.H., Peterson, E.L., Williams, L.K., Ford, J., Young, P. and Johnson, C.C. (2006) Relationship between extremely low total serum IgE levels and rhinosinusitis. Ann. Allergy Asthma Immunol., 97, 650-652. https://doi.org/10.1016/S1081-1206(10)61095-2
  5. Yoshie, O., Imai, T. and Nomiyama, H. (2001) Chemokines in immunity. Adv. Immunol., 78, 57-110. https://doi.org/10.1016/S0065-2776(01)78002-9
  6. Baumer, W., Seegers, U., Braun, M., Tschernig, T. and Kietzmann, M. (2004) TARC and RANTES, but not CTACK, are induced in two models of allergic contact dermatitis. Effects of cilomilast and diflorasone diacetate on T-cell-attracting chemokines. Br. J. Dermatol., 151, 823-830. https://doi.org/10.1111/j.1365-2133.2004.06220.x
  7. Yamashita, U. and Kuroda, E. (2002) Regulation of macrophage-derived chemokine (MDC/CCL22) production. Crit. Rev. Immunol., 22, 105-114.
  8. Saeki, H. and Tamaki, K. (2006) Thymus and activation regulated chemokine (TARC)/CCL17 and skin diseases. J. Dermatol. Sci., 43, 75-84. https://doi.org/10.1016/j.jdermsci.2006.06.002
  9. Shimada, Y., Takehara, K. and Sato, S. (2004) Both Th2 and Th1 chemokines (TARC/CCL17, MDC/CCL22, and Mig/CXCL9) are elevated in sera from patients with atopic dermatitis. J. Dermatol. Sci., 34, 201-208. https://doi.org/10.1016/j.jdermsci.2004.01.001
  10. Jahnz-Rozyk, K., Targowski, T., Paluchowska, E., Owczarek, W. and Kucharczyk, A. (2005) Serum thymus and activation-regulated chemokine, macrophage-derived chemokine and eotaxin as markers of severity of atopic dermatitis. Allergy, 60, 685-688. https://doi.org/10.1111/j.1398-9995.2005.00774.x
  11. Maeda, S., Fujiwara, S., Omori, K., Kawano, K., Kurata, K., Masuda, K., Ohno, K. and Tsujimoto, H. (2002) Lesional expression of thymus and activation-regulated chemokine in canine atopic dermatitis. Vet. Immunol. Immunopathol., 88, 79-87. https://doi.org/10.1016/S0165-2427(02)00140-X
  12. Farrar, M.A. and Schreiber, R.D. (1993) The molecular cell biology of interferon-gamma and its receptor. Annu. Rev. Immunol., 11, 571-611. https://doi.org/10.1146/annurev.iy.11.040193.003035
  13. Best, S.M., Morris, K.L., Shannon, J.G., Robertson, S.J., Mitzel, D.N., Park, G.S., Boer, E., Wolfinbarger, J.B. and Bloom, M.E. (2005) Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J. Virol., 79, 12828-12839. https://doi.org/10.1128/JVI.79.20.12828-12839.2005
  14. Ivashkiv, L.B. and Hu, X. (2004) Signaling by stats. Arthritis Res. Ther., 6, 159-168. https://doi.org/10.1186/ar1197
  15. Ju, S.M., Song, H.Y., Lee, S.J., Seo, W.Y., Sin, D.H., Goh, A.R., Kang, Y.-H., Kang, I.-J., Won, M.-H. and Yi, J.-S. (2009) Suppression of thymus-and activation-regulated chemokine (TARC/CCL17) production by 1, 2, 3, 4, 6-penta-O-galloyl-${\beta}$-d-glucose via blockade of NF-${\kappa}B$ and STAT1 activation in the HaCaT cells. Biochem. Biophys. Res. Commun., 387, 115-120. https://doi.org/10.1016/j.bbrc.2009.06.137
  16. Kang, G.-J., Kang, N.-J., Han, S.-C., Koo, D.-H., Kang, H.-K., Yoo, B.-S. and Yoo, E.-S. (2012) The chloroform fraction of carpinus tschonoskii leaves inhibits the production of inflammatory mediators in HaCaT keratinocytes and RAW264. 7 macrophages. Toxicol. Res., 28, 255-262. https://doi.org/10.5487/TR.2012.28.4.255
  17. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.-e., Karandikar, M., Berman, K. and Cobb, M.H. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev., 22, 153-183. https://doi.org/10.1210/er.22.2.153
  18. Madonna, S., Scarponi, C., De Pita, O. and Albanesi, C. (2008) Suppressor of cytokine signaling 1 inhibits IFN-${\gamma}$ inflammatory signaling in human keratinocytes by sustaining ERK1/2 activation. FASEB J., 22, 3287-3297. https://doi.org/10.1096/fj.08-106831
  19. Hamidpour, R., Hamidpour, S., Hamidpour, M. and Shahlari, M. (2013) Camphor (Cinnamomum camphora), a traditional remedy with the history of treating several diseases. Int. J. Case Rep. Imag., 4, 86-89. https://doi.org/10.5348/ijcri-2013-02-267-RA-1
  20. Guo, S., Geng, Z., Zhang, W., Liang, J., Wang, C., Deng, Z. and Du, S. (2016) The chemical composition of essential oils from Cinnamomum camphora and their insecticidal activity against the stored product pests. Int. J. Mol. Sci., 17, 1836. https://doi.org/10.3390/ijms17111836
  21. Pragadheesh, V., Saroj, A., Yadav, A., Chanotiya, C., Alam, M. and Samad, A. (2013) Chemical characterization and antifungal activity of Cinnamomum camphora essential oil. Ind. Crops Prod., 49, 628-633. https://doi.org/10.1016/j.indcrop.2013.06.023
  22. Yang, F., Long, E., Wen, J., Cao, L., Zhu, C., Hu, H., Ruan, Y., Okanurak, K., Hu, H. and Wei, X. (2014) Linalool, derived from Cinnamomum camphora (L.) Presl leaf extracts, possesses molluscicidal activity against Oncomelania hupensis and inhibits infection of Schistosoma japonicum. Parasit. Vectors, 7, 407. https://doi.org/10.1186/1756-3305-7-407
  23. Lee, H.-J., Hyun, E.-A., Yoon, W.-J., Kim, B.-H., Rhee, M.-H., Kang, H.-K., Cho, J.-Y. and Yoo, E.-S. (2006) In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J. Ethnopharmacol., 103, 208-216. https://doi.org/10.1016/j.jep.2005.08.009
  24. Kang, G.-J., Lee, H.-J., Yoon, W.-J., Yang, E.-J., Park, S.-S., Kang, H.-K., Park, M.-H. and Yoo, E.-S. (2008) Prunus yedoensis inhibits the inflammatory chemokines, MDC and TARC, by regulating the STAT1-signaling pathway in IFN-${\gamma}$-stimulated HaCaT human keratinocytes. Biomol. Ther. (Seoul), 16, 394-402. https://doi.org/10.4062/biomolther.2008.16.4.394
  25. Rauch, I., Müller, M. and Decker, T. (2013) The regulation of inflammation by interferons and their STATs. JAKSTAT, 2, e23820.
  26. Kim, J., Lee, J., Shin, S., Cho, A. and Heo, Y. (2018) Molecular mechanism of atopic dermatitis induction following sensitization and challenge with 2,4-dinitrochlorobenzene in mouse skin tissue. Toxicol. Res., 34, 7-12. https://doi.org/10.5487/TR.2018.34.1.007
  27. de Vries, I.J.M., Langeveld-Wildschut, E.G., van Reijsen, F.C., Bihari, I.C., Bruijnzeel-Koomen, C.A. and Thepen, T. (1997) Nonspecific T-cell homing during inflammation in atopic dermatitis: expression of cutaneous lymphocyte-associated antigen and integrin ${\alpha}$E${\beta}$7 on skin-infiltrating T cells. J. Allergy Clin. Immunol., 100, 694-701. https://doi.org/10.1016/S0091-6749(97)70175-1
  28. Debes, G.F., Bonhagen, K., Wolff, T., Kretschmer, U., Krautwald, S., Kamradt, T. and Hamann, A. (2004) CC chemokine receptor 7 expression by effector/memory CD4+ T cells depends on antigen specificity and tissue localization during influenza A virus infection. J. Virol., 78, 7528-7535. https://doi.org/10.1128/JVI.78.14.7528-7535.2004
  29. Hald, A., Andrés, R., Salskov-Iversen, M., Kjellerup, R., Iversen, L. and Johansen, C. (2013) STAT1 expression and activation is increased in lesional psoriatic skin. Br. J. Dermatol., 168, 302-310. https://doi.org/10.1111/bjd.12049
  30. Platanias, L.C. (2005) Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat. Rev. Immunol., 5, 375-386. https://doi.org/10.1038/nri1604
  31. Roy, S.K., Hu, J., Meng, Q., Xia, Y., Shapiro, P.S., Reddy, S.P., Platanias, L.C., Lindner, D.J., Johnson, P.F. and Pritchard, C. (2002) MEKK1 plays a critical role in activating the transcription factor C/EBP-${\beta}$-dependent gene expression in response to IFN-${\gamma}$. Proc. Natl. Acad. Sci. U.S.A., 99, 7945-7950. https://doi.org/10.1073/pnas.122075799
  32. Li, N., McLaren, J.E., Michael, D.R., Clement, M., Fielding, C.A. and Ramji, D.P. (2010) ERK is integral to the IFN-${\gamma}$-mediated activation of STAT1, the expression of key genes implicated in atherosclerosis, and the uptake of modified lipoproteins by human macrophages. J. Immunol., 185, 3041-3048. https://doi.org/10.4049/jimmunol.1000993
  33. Menegazzi, M., Tedeschi, E., Dussin, D., de Prati, A.C., Cavalieri, E., Mariotto, S. and Suzuki, H. (2001) Anti-interferon ${\gamma}$ action of epigallocatechin-3-gallate mediated by specific inhibition of STAT1 activation. FASEB J., 15, 1309-1311. https://doi.org/10.1096/fj.00-0519fje
  34. Liu, F.-T., Goodarzi, H. and Chen, H.-Y. (2011) IgE, mast cells, and eosinophils in atopic dermatitis. Clin. Rev. Allergy Immunol., 41, 298-310. https://doi.org/10.1007/s12016-011-8252-4
  35. Koning, J.J. and Mebius, R.E. (2012) Interdependence of stromal and immune cells for lymph node function. Trends Immunol., 33, 264-270. https://doi.org/10.1016/j.it.2011.10.006
  36. Buettner, M. and Bode, U. (2012) Lymph node dissection-understanding the immunological function of lymph nodes. Clin. Exp. Immunol., 169, 205-212. https://doi.org/10.1111/j.1365-2249.2012.04602.x