• Title/Summary/Keyword: Macrocyclic

Search Result 233, Processing Time 0.024 seconds

Template Synthesis of New Polyazamacrocycles

  • Lee, Young-Hoon;Lee, Man-Kil
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.339.2-339.2
    • /
    • 2002
  • Interest in the synthesis and chemistry of multidentate macrocyclic ligands is currently very high. Synthetic macrocycles arise from the fact that many biologically important molecules are metal complexes of macrocyclic organic systems: and in order to understand the mechanism of action of the naturally occurring complexes. chemists have resorted to the synthesis and study of so-called model systems. (omitted)

  • PDF

Reaction of the Fe(II) Macrocyclic Complexes with Dioxygen : Preparation of New Unsaturated Ring Systems by Oxidative Dehydrogenation Reactions of Fe(II) Macrocyclic Ligands (이가철 거대고리 리간드의 착화합물과 산소 분자간의 반응 : 이가철 거대고리 리간드 착화합물의 산화성 탈수소 반응에 의한 새로운 불포화 고리계의 합성)

  • Myunghyun Paik;Shin-Geol Kang;Kyu Whan Woo
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.384-392
    • /
    • 1984
  • Reaction of the Fe(II) complex of a fully saturated tetradentate macrocyclic ligand [Fe([14]aneN$_4)(CH_3CN)_2]^{2+}$, where [14]ane$N_4$ represents 1,4,8,11-tetraazacyclotetradecane, with $O_2$ has been investigated in acetonitrile solutions. [Fe([14]aneN$_4)(CH_3CN)_2]^{2+}$ reacts with oxygen to yield low spin Fe(III) species, [Fe([14]aneN$_4)(CH_3CN)_2]^{3+}$, which undergoes metal ion assisted oxidative dehydrogenation of the macrocyclic ligand to produce low spin Fe(II) complex, [Fe([14]tetraeneN$_4)(CH_3CN)_2]^{2+}$. The macrocyclic ligand in [Fe([14]tetraeneN$_4)(CH_3CN)_2]^{2+}$ is highly unsaturated and its double bonds are conjugated. [Fe([14]dieneN$_4)(CH_3CN)_2]^{2+}$ and [Fe([14]dieneN$_4)(CH_3CN)_2]^{3+}$ are isolated as the intermediates of the reaction. The Fe(II) complexes involved in this oxidative dehydrogenation reaction react with carbon monoxide to give respective carbon monoxide derivatives, [FeL$(CH_3CN)(CO)]^{2+}$ (where L = macrocyclic ligand). The values of $v_{CO}$ of [FeL$(CH_3CN)(CO)]^{2+}$, and the electrochemical oxidation potentials of Fe(II) ${\to}$ Fe(III) and the qualitative stability toward air-oxidation for [FeL(CH$_3CN_2)^{2+}$ increase as the degree of unsaturation of the macrocyclic ligands increase.

  • PDF

Resin Synthesis of Adsorbent Metal Ions using 1-Aza-12-Crown-4 (1-Aza-12-Crown-4를 이용한 금속 이온 흡착제 수지 합성)

  • Kim Joon-Tae;Roh Gi-Hwan
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.3 s.53
    • /
    • pp.52-57
    • /
    • 2004
  • Content of chlorine in s쇼rene-DVB copolymer was decreased as crosslink increased and it is because as crosslink increased $1\%,\;2\%,\;5\%\;and\;10\%$ DVB content increased and crosslink density increased and cavity was reduced. Functional group of resin almost disappeared as C-C1 peak around $700cm^{-1}$ was substituted with 1-aza-12-C-4 macrocyclic ligand and new peak of C-N around $1020cm^{-1}$ appeared, so it was confirmed that styrene-DVB copolymer and ligand were compounded. As crosslink increased in the analysis of element contents, it resulted in the reduction of nitrogen content and it is because as crosslink increased, it led to the reduction of chlorine content in the process of substitution reaction and it affected macrocyclic ligand substituted. Form of functional synthetic resin showed distortion of its particles as macrocyclic ligand was introduced to styrene-DVB copolymer and hydrogen of ligand caused substitution with chlorine element of styrene molecule.

Synthesis of α-oximinoketones, Precursor of CO2 Reduction Macrocyclic Coenzyme F430 Model Complexes

  • Kim, Gilhoon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.139-144
    • /
    • 2017
  • Ni(II) containing coenzyme F430 catalyzes the reduction of $CO_2$ in methanogen. Macrocyclic Ni(II) complexes with N,O shiff bases have been received a great attention since metal ions play an important role in the catalysis of reduction. The reducing power of metal complexes are supposed to be dependent on oxidoreduction state of metal ion and structural properties of macrocyclic ring moiety that can enhance electrochemical properties in catalytic process. Six different ${\alpha}$-oximinoketone compounds, precursor of macrocyclic ligands used in $CO_2$ reduction coenzyme F430 model complexes, were synthesized with yields over 90% and characterized by NMR. The molecular geometries of ${\alpha}$-oximinoketone analogues were fully optimized at Beck's-three-parameter hybrid (B3LYP) method in density functional theory (DFT) method with $6-31+G^*$ basis set using the ab initio program. In order to understand molecular planarity and substitutional effects that may enhance reducing power of metal ion are studied by computing the structure-dependent $^{13}C$-NMR chemical shift and comparing with experimental results.

Template Synthesis of Polyaza Macrocyclic Copper(II) and Nickel(II) Complexes: Spectral Characterization and Antimicrobial Studies

  • Gurumoorthy, P.;Ravichandran, J.;Karthikeyan, N.;Palani, P.;Rahiman, A. Kalilur
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2279-2286
    • /
    • 2012
  • The template synthesis of copper(II) and nickel(II) complexes derived from 2,6-diformyl-4-methylphenol with diethylenetriamine or 1,2-bis(3-aminopropylamino)ethane produce the 12-membered $N_3O$ and 17-membered $N_4O$ macrocyclic complexes, respectively. The geometry of the complexes has been determined with the help of electronic and EPR spectroscopic values and found to be five coordinated square pyramidal and, six coordinated distorted tetragonal for 12-membered and 17-membered macrocyclic complexes, respectively. Electrochemical studies of the mononuclear $N_3O$ and $N_4O$ copper(II) complexes show one irreversible oneelectron reduction wave at $E_{pc}=-1.35$ and -1.15 V respectively, and the corresponding nickel(II) complexes show irreversible one-electron reduction wave at $E_{pc}=-1.25$ and -1.22 V, respectively. The nickel(II) complexes show irreversible one-electron oxidation wave at $E_{pa}=+0.84$ and +0.82 V, respectively. All the complexes were evaluated for in vitro antimicrobial activity against the human pathogenic bacteria and fungi.

One-Pot Reaction Involving Two Different Amines and Formaldehyde Leading to the Formation of Poly(Macrocyclic) Cu(II) Complexes

  • Lee, Yun-Taek;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2517-2522
    • /
    • 2012
  • New polynuclear poly(hexaaza macrocyclic) copper(II) complexes $[1](ClO_4)_{2n}{\cdot}(H_2O)_{2n}$, $[2](ClO_4)_{2n}{\cdot}(H_2O)_{2n}$, and $[3](ClO_4)_{2n}{\cdot}(H_2O)_{2n}$ have been prepared by the one-pot reaction of formaldehyde with ethylenediamine and 1,2-bis(2-aminoethoxy)ethane, 1,3-diaminopropane, or 1,6-diaminohexane in the presence of the metal ion. The polymer complexes contain fully saturated 14-membered hexaaza macrocyclic units (1,3,6,8,10,13-hexaazacyclotetradecane) that are linked by $N-(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2-N$, $N-(CH_2)_3-N$, or $N-(CH_2)_6-N$ chains. The mononuclear complex $[Cu(H_2L^5)](ClO_4)_4$ ($H_2L^5$ = a protonated form of $L^5$) bearing two $N-(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2-NH_2$ pendant arms has also been prepared by the metal-directed reaction of ethylenediamine, 1,2-bis(2-aminoethoxy)ethane, and formaldehyde. The polymer complexes were characterized employing elemental analyses, FT-IR and electronic absorption spectra, molar conductance, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron micrograph (SEM). Electronic absorption spectra of the complexes show that each macrocyclic unit of them has square-planar coordination geometry with a 5-6-5-6 chelate ring sequence. The polymer complexes as well as $[Cu(H_2L^5)]^{4+}$ are quite stable even in concentrated $HClO_4$ solutions. Synthesis and characterization of the polynuclear and mononuclear copper(II) complexes are reported.

Synthesis and Characterization of New Polyaza Non-macrocyclic and Macrocyclic Nickel(II) Complexes Containing One 1,3-Diazacyclohexane Ring

  • Lee, Yun-Taek;Jang, Bo Woo;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2125-2130
    • /
    • 2013
  • A new nickel(II) complex $[NiL^1]^{2+}$ ($L^1$ = 1-(2-aminoethyl)-3-(N-{2-aminoethyl}aminomethyl-1,3-diazacyclohexane) containing one 1,3-diazacyclohexane ring has been prepared selectively by the metal-template condensation of formaldehyde with N-(2-aminoethyl)-1,3-propanediamine and ethylenediamine at room temperature. The complex reacts with nitroethane and formaldehyde to yield the pentaaza macrocyclic complex $[NiL^2]^{2+}$ ($L^2$ = 8-methyl-8-nitro-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one C-$NO_2$ pendant arm. The reduction of $[NiL^2]^{2+}$ by using Zn/HCl produces $[NiL^3(H_2O)]^{2+}$ ($L^3$ = 8-amino-8-methyl-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one coordinated C-$NH_2$ pendant arm that is readily protonated in acid solutions. The hexaaza macrocyclic complex $[NiL^4]^{2+}$ ($L^4$ = 8-phenylmethyl-8-nitro-1,3,6,8,10,13-hexaazabicyclo[13.3.1]heptadecane) bearing one N-$CH_2C_6H_5$ pendant arm has also been prepared by the reaction of $[NiL^1]^{2+}$ with benzylamine and formaldehyde. The nickel(II) complexes of $L^1$, $L^2$, and $L^4$ have square-planar coordination geometry in the solid states and in nitromethane. However, they exist as equilibrium mixtures of the square-planar $[NiL]^{2+}$ (L = $L^1$, $L^2$, or $L^4$) and octahedral $[NiL(S)_2]^{2+}$ species in various coordinating solvents (S); the proportion of the octahedral species $[NiL(S)_2]^{2+}$ is strongly influenced by the ligand structure and the nature of the solvent. Synthesis, spectra, and chemical properties of the nickel(II) complexes of $L^1-L^4$ are described.

Adsorption of Uranium Ion Utilizing OenNtn-Styrene-DVB Resin (OenNtn-스틸렌-DVB 수지를 이용한 우라늄(VI) 이온의 흡착)

  • 김준태;노기환;강영식
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.9-15
    • /
    • 2003
  • Resins have been synthesized from chlormethyl styrene 1,4- divinylbenzene(DVB) with 1%, 4%, and 20%-crosslinked and macrocyclic ligand of cryptand type by copolymerization method and the adsorption of uranium(VI), nickel(II) and lutetium(III) ions have been investigated in various experimental conditions. The correlation between the adsorption characteristics of rare earths and transition metal on the resins and stability constants of complexes with macrocyclic ligand have been examined. The uranium ion was not adsorbed on the resins below pH 2.0, but the power of adsorption of uranium ion increased rapidly above pH 3.0. The adsorption power was in the order of 1%, 4% and 20%-crosslinked resin, but adsorptive characteristics of resins decreased in proportion to the order of dielectric constants of solvents.

Synthesis and Physicochemical Properties of Schiff Base Macrocyclic Ligands and Their Transition Metal Chelates

  • Rafat, Fouzia;Siddiqi, K.S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.912-918
    • /
    • 2011
  • Tetraaza Schiff base macrocyclic ligands, $L^1$,$L^2$ and their transition metal chelates have been synthesized and characterized by elemental analyses, IR, electronic, EPR and $^1H$ NMR spectra, TGA and magnetic measurements. The molar conductance of one milli-molar solution of the complexes measured in DMF indicates that the divalent metal complexes are nonelectrolyte while those of trivalent metal ion, are 1:1 electrolytic in the same solvent. The reduction of Racah parameter from the free ion value confirms the presence of considerable covalence of metal ligand sigma bond in the Co(II) and Mn(II) complexes. The EPR spectra of Cu(II) complexes at room temperature shows axial symmetry indicating a $d_x{^2}_{-y}{^2}$ ground state with significant covalent character. The thermal analysis suggests that the complexes do not contain water molecules because only the metal is left as residue.

Adsorption characteristic of uranium(VI) on OenNtn synthetic resin with styrene (Styrene을 이용한 OenNtn수지의 합성과우라늄(VI) 이온 흡착 특성)

  • Kim, Joon-Tae
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.2
    • /
    • pp.47-53
    • /
    • 2008
  • The ion exchange resins have been synthesized from chloromethyl styrene (dangerous matter) 1, 4-divinylbenzene(DVB) with 1%, 5%, and 15%-crosslinked and macrocyclic ligand of cryptand type by copolymerization method and the adsorption of uranium(VI), cobalt(II) and europium(III) ions have been investigated in various experimental conditions. The correlation between the adsorption characteristics of rare earths and transition metal on the resins and stability constants of complexes with macrocyclic ligand have been examined. The uranium ion was not adsorbed on the resins below pH 2.0, but the power of adsorption of uranium ion increased rapidly above pH 3.0. The adsorption power was in the order of 1%, 5% and 15%-crosslinked resin, but adsorptive characteristics of resins decreased in proportion to the order of dielectric constants of solvents.