DOI QR코드

DOI QR Code

Synthesis of α-oximinoketones, Precursor of CO2 Reduction Macrocyclic Coenzyme F430 Model Complexes

  • Kim, Gilhoon (Department of Chemical and Molecular Engineering, Hanyang University) ;
  • Won, Hoshik (Department of Chemical and Molecular Engineering, Hanyang University)
  • Received : 2017.01.10
  • Accepted : 2017.11.29
  • Published : 2017.12.20

Abstract

Ni(II) containing coenzyme F430 catalyzes the reduction of $CO_2$ in methanogen. Macrocyclic Ni(II) complexes with N,O shiff bases have been received a great attention since metal ions play an important role in the catalysis of reduction. The reducing power of metal complexes are supposed to be dependent on oxidoreduction state of metal ion and structural properties of macrocyclic ring moiety that can enhance electrochemical properties in catalytic process. Six different ${\alpha}$-oximinoketone compounds, precursor of macrocyclic ligands used in $CO_2$ reduction coenzyme F430 model complexes, were synthesized with yields over 90% and characterized by NMR. The molecular geometries of ${\alpha}$-oximinoketone analogues were fully optimized at Beck's-three-parameter hybrid (B3LYP) method in density functional theory (DFT) method with $6-31+G^*$ basis set using the ab initio program. In order to understand molecular planarity and substitutional effects that may enhance reducing power of metal ion are studied by computing the structure-dependent $^{13}C$-NMR chemical shift and comparing with experimental results.

Keywords

References

  1. C. D. Taylor and R. S. Wolfe, J. Biol. Chem. 249, 4879 (1974)
  2. R. P. Gunsalus and R. S. Wolfe, J. Biol. Chem. 255, 1891 (1980)
  3. W. Ellefson, W. B. Whitman, and R. S. Wolfe, Proc. Natl. Acad. Sci. U.S.A. 79, 3707 (1982) https://doi.org/10.1073/pnas.79.12.3707
  4. R. S. Wolfe, Trends Biochem. Sci. 10, 396 (1985) https://doi.org/10.1016/0968-0004(85)90068-4
  5. A. Pfaltz, B. Juan, A. Fasser, A. Eschenmoser, R. Jaenchen, H. H. Gilles, G. Diekert, and R. K. Thauer, Helv. Chim. Acta. 65, 828 (1982) https://doi.org/10.1002/hlca.19820650320
  6. A. Pfaltz, D. A. Livingston, B. Juan, G. Diekert, R. K. Thauer, and A.Eschenmoser, Helv. Chim. Acta. 68, 1338 (1985) https://doi.org/10.1002/hlca.19850680527
  7. R. Waditkschatka, C. Kratky, B. Juan, J. Heinzer, and A. Eschenmoser, J. Chem. Soc. Chem. Comm. 22, 1604 (1985)
  8. C. Kratky, R. Waditkschatka, C. Angst, J. E.Johansen, J. C. Plaquevent, J. Schreiber, and A. Eschenmoser, Helv. Chim. Acta. 68, 1312 (1985) https://doi.org/10.1002/hlca.19850680526
  9. C. T. Walsh and W. H. Orme-Johson, Biochemistry 26, 4901 (1987) https://doi.org/10.1021/bi00390a001
  10. L. P. Wackett, J. F. Honek, T. P. Begley, V. Wallace, W. H. Orme-Johson, and C. T. Walsh, Biochemistry 26, 6012 (1987) https://doi.org/10.1021/bi00393a010
  11. M. K. Eidsness, R. J. Sullivan, J. R. Schwartz, P. L. Hartzell, R. S. Wolve, A. M. Flank, S. P. Cramer, and R. A. Scott, J. Am. Chem. Soc. 108, 3120 (1986) https://doi.org/10.1021/ja00271a060
  12. A. K. Shiemke, R. A. Scott, and J. A. Shelnutt, J. Am. Chem. Soc. 110, 1645 (1988) https://doi.org/10.1021/ja00213a059
  13. B. Jaun and A. Pfaltz, J. Chem. Soc. Chem. Comm. 4, 293 (1988)
  14. N. Bresciani-Pahor, M. Forcolin, L. G. Marzilli, L. Randaccio, M. F. Summers, and P. Toscano, J. Coord. Chem. 63, 1 (1985) https://doi.org/10.1016/0010-8545(85)80021-7
  15. H. Gilles and R. K. Thauer, Eur. J. Biochem. 135, 109 (1983) https://doi.org/10.1111/j.1432-1033.1983.tb07624.x
  16. H. S. Won and M. F. Summers, Bull. Kor. Chem. Soc. 19, 379 (1992)
  17. G. Alessandra, M. F. Summers, and L. G. Marailli., J. Am. Chem. Soc. 114, 6711 (1992) https://doi.org/10.1021/ja00043a015
  18. A. H. A. Mohammed and N. Gopalpur., Tetrahedron Lett. 44, 2753 (2003) https://doi.org/10.1016/S0040-4039(03)00248-X
  19. W. Lee and R.G.Yang, Phys. Rev. B37, 785 (1988) https://doi.org/10.1103/PhysRevB.37.785
  20. D. Becke, J. Chem. Phys. 98, 5648 (1993) https://doi.org/10.1063/1.464913
  21. R. Ditchfield, Mol. Phys. 27, 789 (1974) https://doi.org/10.1080/00268977400100711
  22. K. Wolinski, J. F. Hilton, and P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990) https://doi.org/10.1021/ja00179a005
  23. J. Gauss, J. Chem. Phys. 99, 3629 (1993) https://doi.org/10.1063/1.466161
  24. J. Gauss and J. F. Stanton, J. Chem. Phys. 102, 251 (1995) https://doi.org/10.1063/1.469397
  25. G. Chung, O. Kwon, and Y. Kwon, J. Phys. Chem. A 101, 9415 (1997) https://doi.org/10.1021/jp971464v
  26. G. Chung, O. Kwon, and Y. Kwon, J. Phys. Chem. A 101, 4628 (1997) https://doi.org/10.1021/jp963942s
  27. G. Chung, O. Kwon, and Y. Kwon, J. Phys. Chem. A 102, 2381 (1998) https://doi.org/10.1021/jp973366f
  28. G. H. Kim and H. S. Won, J. Kor. Magn. Reson. Soc. 18, 2 (2014)
  29. S. Lee, D. Shin, S. Woo, and H. Won, J. Kor. Magn. Reson. Soc. 16, 133 (2012) https://doi.org/10.6564/JKMRS.2012.16.2.133