• Title/Summary/Keyword: Machining processing

Search Result 529, Processing Time 0.024 seconds

5-Axis CNC Machining for Drum Cam with Rotational Follower - I (Post Processing Method for Rough Machining) (회전형 종동절을 갖는 드럼 캠의 5-축 CNC 가공 - I (황삭가공을 위한 포스트 프로세싱))

  • Cho, Hyun-Deog;Yoon, Moon-Chul;Kim, Kyung-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.678-683
    • /
    • 2010
  • The drum cam with rotational follower is used to apply the ATC and index table of machine tools and it has the merit of minimizing the backlash. In general, to machine the drum cam with rotational follower, 5-axis CNC machine must be used and its kinematic principle must be included in modeling on CAM. So, the commercialized CAM software can't be applied to this machining of drum cam. Though some special software for machining drum cam was developed, it could be applied to special 5-axis CNC machine tools and the finish machining module was not applied. To solve this problem, this study includes the induction of the post processing algorithm for the rough machining of drum cam on several 5-axis CNC machine tools, type AC, AB and Be. The finish machining software will be treated in next study. A sample drum cam was machined on 5-axis CNC machine tool of AC type. The designed geometric profile of drum cam consist to the measured profile after machining well. This post processing algorithm for rough machining of the drum cam was clearly verified.

5-Axis CNC Machining for Drum Cam with Rotational Follower - II (Post Processing Method for Fine Machining) (회전형 종동절을 갖는 드럼 캠의 5-축 CNC 가공 - II (정삭가공을 위한 포스트프로세싱))

  • Cho, Hyun-Deog;Yoon, Moon-Chul;Kim, Kyung-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.684-690
    • /
    • 2010
  • A drum cam with rotational follower has a cam mechanism and it is mainly used in its application such as index table and ATC of machine tool. Also its use can reduce the backlash in its kinematic movement. To machine the drum cam with rotational follower, 5-axis CNC machine tool is generally used and its kinematic principle is included in it's design. Until now, the commercialized CAM software can't cover the application of the drum cam machining. Even if, some special software was developed for machining a drum cam, the post processing method for finish machining was not developed yet. And to overcome the problem, the form tool is still used on the tool path of rough machining. This study includes the induction of the post processing technique for the finish machining of drum cam on three 5-axis CNC machine tools, type AC, AB and BC. To prove the finishing geometric profile, the result was clearly verified through inspection and geometric measurement after direct machining of the drum cam in AC type 5-axis machine tool in this study.

A Study on the efficiency test of Electric Discharge Machine Wire using Image processing (화상처리를 이용한 방전와이어의 성능평가에 대한 연구)

  • 배진한;이위로;유송민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.117-122
    • /
    • 2002
  • Electrical discharge machining uses thermal energy from electrical discharge, while wire electrical discharge machining (WEDM) technology is widely used in conductive material machining. This paper proposes a method for evaluating the characteristics of wires in WEDM. In order to evaluate the wire processing performance, processing speed and roughness, straightness, corner processing have been assessed with precision experiment equipment and image processing including Laplacian filtering with various threshold levels.

  • PDF

Design of High Speed Spindles Active Monitoring and Control Algorithm (고속 주축의 상태모니터링 및 제어 알고리즘 설계)

  • Choi, Hyun-Jin;Park, Chul-Woo;Bae, Jung-Sub;Ahn, Jeong-Hun;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.13-19
    • /
    • 2011
  • In this paper, the active monitoring and control system is developed. This system can monitor the status of high the speed spindle in real time during its processing, and can analyze its influence of dimensional accuracy and processing if any, and can control the machining condition to realize the machining system equipped with active monitoring and self-diagnostic features. Machining experiment was performed on 3 materials Al, Brass and S45C in order to derive the relation between active monitoring and control algorithm by the machining load. In addition, we measured surface roughness of processing specimen along with the data change of spindle rotating speed and conveying speed according to variation of machining load. Based on these experiments, we derived relations for each material that can be applied to the control algorithm to allow self control of the rotating speed and conveying speed according to the machining load.

NURBS Post-processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1111-1117
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good for precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied, and the machining result of NURBS tool path was compared with that of linear tool path. The N-post, post-processing and virtual machining software was developed. The N-Post post-processes linear tool path to NURBS tool path and quickly shades machined product on OpenGL view and compares a machined product with original CAD surface. A virtual machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error of post-processed NURBS tool path was reduced to 43%. The original tool path and NURBS tool path was used to machine general model using same machine tool and machining condition. The machining time of post-processed NURBS tool path was reduced up to 38%.

  • PDF

Selection of Optimal Processing Conditions for Quartz Using the Taguchi Method (다구찌법을 이용한 석영의 최적 가공조건 선정에 관한 연구)

  • Jeong, Ho-In;Choi, Seong-Jun;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2022
  • Quartz (SiO2) has high abrasion and heat resistances and excellent chemical and mechanical properties; therefore, it is used in various industries, such as machinery, chemistry, optics, and medicine. Quartz is a high-hardness and brittle material and is classified as the topmost difficult-to-cut material, which is because of the cracking or chipping at the edge during processing. Corner wear, such as cracks and chippings that occur during cutting, is a major cause for the deterioration in the machining quality. Therefore, many researchers are investigating various techniques to process quartz effectively. However, owing to the mechanical properties of quartz, most studies have been conducted on grinding, micromachining, and microdrilling. Few studies have been conducted on quartz processing. The purpose of this study was to analyze the machining characteristics according to the machining factors during the slot machining of quartz using a cubic boron nitride (CBN) tool and to select the optimal machining conditions using the Taguchi method. The machining experiment was performed considering three process variables: the spindle speed, feed rate, and depth of cut. The cutting force and surface roughness were analyzed according to the processing conditions.

The Study on the Wafer Surface and Pad Characteristic for Optimal Condition in Wafer Final Polishing (최적조건 선정을 위한 Pad 특성과 Wafer Final Polishing의 가공표면에 관한 연구)

  • Won, Jong-Koo;Lee, Eun-Sang;Lee, Sang-Gyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study will report the characteristic of wafer according to processing time, machining speed and pressure which have major influence on the abrasion of Si wafer polishing. It is possible to evaluation of wafer abrasion by load cell and infrared temperature sensor. The characteristic of wafer surface according to processing condition is selected to use a result data that measure a pressure, machining speed, and the processing time. This result is appeared by the characteristic of wafer surface in machining condition. Through that, the study cans evaluation a wafer characteristic in variable machining condition. It is important to obtain optimal condition. Thus the optimum condition selection of ultra precision Si wafer polishing using load cell and infrared temperature sensor. To evaluate each machining factor, use a data through each sensor. That evaluation of abrasion according to variety condition is selected to use a result data that measure a pressure, machining speed, and the processing time. And optimum condition is selected by this result.

NURBS Post-Processing of Linear Tool Path (미소직선 공구경로의 NURBS 변환)

  • Kim, Su-Jin;Choi, In-Hugh;Yang, Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1227-1233
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good fur precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied and the machining result of NURBS tool path was compared with that of linear tool path. The N-post including both a post-processing and a virtual machining software was developed. The N-Post transforms linear tool path to NURBS tool path and quickly shades a machined product on OpenGL view, while comparing a machined surface with a original CAD one. A virtulal machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error and machining time of post-processed NURBS tool path were investigated.

Experimental Research on the Surface Roughness Characteristics in Machining Center Machining of A5083 Alloy (A5083 합금의 머시닝센터 가공에서 표면거칠기 특성에 관한 실험적 연구)

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.57-62
    • /
    • 2021
  • CNC machining is used to fabricate various components. This has led to the development of processing-based industries for the production of automobile, appliances, semiconductors, and rockets. Additionally, this machining has enabled economical mass production of high-quality products in industries. Magnesium alloy with a hexagonal closed packed configuration is prone to difficulties during plastic machining, has a high oxygen affinity, and exhibits poor corrosion resistance to seawater and the atmosphere. In this research, Al alloy A5083 was used to investigate and analyze the surface roughness with a certain depth of cut fixed by the machining center (DVM-500II) and various feed rates, speeds, and processing methods after modeling and simulated machining with Gibbs CAM.