• Title/Summary/Keyword: Machinery failure

Search Result 280, Processing Time 0.026 seconds

Waterhammer for In-line Booster Pump (직결식 펌프의 수격현상)

  • Kim, Sang-Gyun;Lee, Gye-Bok;Kim, Kyung-Yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.7-14
    • /
    • 2005
  • The waterhammer occur when the pumps are started or stopped for the operation or tripped due to the power failure, and the hydraulic transients take place as a result of the sudden change in velocity. Several times, the field tests of the waterhammer were carried out for Pangyo booster pumping station. Pangyo pumping station was installed with the booster pumps of 6 sets and the in-line pumps of 2 sets. The in-line pumps are additionally needed to the surge suppression device so that the pumping station acquire the safety and reliability for the pressure surge.

Study on The Preparation and Mechanical Properties of Fiberglass Reinforced Wood-Based Composite

  • Zhang, Yang;Ma, Yan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.505-514
    • /
    • 2016
  • To study mechanical properties of fiberglass reinforced wood-based composite (FRWC), fiberglass with a diameter of $20{\mu}m$ was selected to prepare test specimens. Mechanical properties of fiberglass reinforced wood-based composite were determined by three-point-bending test while its microstructure was characterizes by scanning electron microscopy (SEM). The results showed that mechanical properties of fiberglass reinforced wood-based composite were superior to that of the wood fiberboard based on the contrasting mechanical curves and the analysis of fracture mechanism. It is believed that the material design with this "sandwich" structure brings a unique buffering capacity of fiberglass into play in the composites. So the specimen did not produce a sudden fracture failure at high level of applied loads because it had a bearing ability. The SEM analysis showed that the working strength of PVAc adhesive was high; under a bearing force, it could properly transfer a load. In addition, glass fiber mesh and wood fiber board combined well.

A Study on the Life Characteristic of Rodless Cylinder (로드리스 실린더의 수명 특성에 관한 연구)

  • Lee, C.S.;Lim, J.H.;Kang, S.B.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • Pneumatic cylinders are classified into rod-type pneumatic cylinders and rodless pneumatic cylinders depending on the presence of the rod. Rodless cylinders have a constant area and have no deflection. Rodless cylinders are widely used in automatic systems requiring high-speed performance and high-precision transportation. However, the research of the pneumatic cylinder has been focused on the structure and life characteristics. In this research, aging characteristics and shape parameter analysis which are related to the lifetime were investigated. By conducting the lifetime tests with two different materials for the transfer plate, the failure mode and lifetime characteristics were analyzed. By the Anderson-Darling (A-D) verification based on the complete data set, the analysis results of lifetime distribution, shape parameter, and scale parameter were provided.

Behavior on the wear and friction of sealing composite for ship machinery (선박기계용 실링 복합재료의 마모 및 마찰거동)

  • LEE, Jung-Kyu;KOH, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.2
    • /
    • pp.204-209
    • /
    • 2017
  • In order to use PUR/CuO Composites as the sealing materials for ships equipment, this research has been performed. PUR/CuO composites are produced by using ultrasonic waves. The increase of CuO leads to increase in the tensile strength and shore hardness. The cumulative wear volume shows a tendency to increase in proportional to sliding distance. As the CuO particles of these composites indicated, the friction coefficient was slightly increased. The major failure mechanisms were lapping layers, deformation of matrix, plowing, debonding of particles and microcracking by scanning electric microscopy photograph of the wear tested surface.

A Study on the Neural Network Diagnostic System for Rotating Machinery Failure Diagnosis (신경망을 이용한 회전축의 이상상태 진단에 관한 연구)

  • 유송민;박상신
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.461-468
    • /
    • 2000
  • In this study, a neural network based diagnostic system of a rotating spindle system supported by ball bearings was introduced. In order to create actual failure situations, two exemplary abnormal status were made. Out of several possible data source locations, ten measurement spots were chosen. In order to discriminate multiple abnormal status, a neural network system was introduced using back propagation algorithm updating connecting weight between each nodes. In order to find the optimal structure of the neural network system reducing the information sources, magnitude of the weight of the network was referred. Hinton diagram was used to visually inspect the least sensitive weight connecting between input and hidden layers. Number of input node was reduced from 10 to 7 and prediction rate was increased to 100%.

A Study on the Decision of an Optimal Maintenance Period for Ship's Machinery Items using the Cumulative Hazard Rate Function for Weibull Distribution (Weibull형 고장분포를 갖는 선박용 부품의 최적 보전시기의 결정수법에 관한 연구)

  • 유희한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.90-96
    • /
    • 2000
  • The technology of preventive maintenance and corrective maintenance is widely applied to ships in order to maintain the good voyageable condition. One of the most important fields of marine engineering is to seek the maximum availability and to solve the stochastic maintenance problem such that the cost for corrective maintenance is minimized. Accordingly, for the purpose of making the most suitable maintenance schedule which minimizes the expected cost function, this paper suggests the method to grasp the failure characteristics by the ship's maintenance data that are collected from the past. And, suggests the method to estimate the optimal maintenance interval by using the dynamic programming and the cumulative hazard rate function attained from the maintenance data.

  • PDF

A study on the development of life test equipment for eco-robot for collecting recycling products (재활용품 회수용 환경로봇 수명시험 장치 구성에 관한 연구)

  • Kang, B.S.
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.357-369
    • /
    • 2011
  • Eco-robot for collecting recycling products is the machine which collects non-industrial wastes such as cans, PET bottles and etc. to reuse them as recycling resources. This eco-robot is operated in the condition that it should compress and hold various products without knowing their geometric shapes and material properties. For this reason reliability problems like malfunction or failure. comes to emerge, but the reliability test conditions to assess its performance and durability have not been founded yet. Therefore in this research failure mechanism of the eco-robot was analyzed and life test equipment which can reproduce actual usage conditions was developed. The compression levels in the life test were determined by measuring the crushing force acting on test products and Furthermore the test specimens which have equivalent shape and material properties with those of cans and PET bottles were proposed by simulating the deformation characteristics so that the actual compression conditions were set up in the test.

A Study on the Prediction System of Construction Machinery Failure using Big Data (빅 데이터 분석을 통한 가설기기의 고장예측시스템)

  • Yun, Da Young;Park, Yoon Su;Lee, Hyun Hwa;Lee, Sang Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.153-154
    • /
    • 2013
  • 토목 및 건설, 건축 등의 현장에서 많이 사용되는 가설기기들은 기계의 자체적인 기계고장 뿐만 아니라 야외 현장의 환경에 따른 기후의 변화에도 고장이 발생할 수 있다. 이러한 고장들을 사후약방문의 형식으로 고장이 발생하는 경우에만 수리 후 사용한다면 시간적/경제적으로 많은 손실이 있을 것이다. 그러나 가설기기들의 종류별 기기적 특징을 미리 시스템화하여 발생할 수 있는 고장을 사전에 방지하고 예방한다면 불필요한 손실을 미연에 막을 수 있다. 따라서 본 논문에서는 가설기기들과 관련된 각종 빅 데이터를 이용하여 피로도를 예측하여 고장이 발생하기 전에 사전에 예방할 수 있는 시스템을 제안한다.

  • PDF

A Study on Characteristic Analysis of C-Plate Cover and Examination of Weak Parts (C-Plate 커버의 구조해석 및 취약부 규명)

  • 김옥구;송준엽;강재훈;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.373-377
    • /
    • 2003
  • Recently, advanced manufacturing systems with high speed and intelligence have been developed for the betterment of machining ability. In this case, reliability prediction work with motion characteristic evaluation of sliding cover(C-plate, Bellows, etc) has also important role from design procedure to manufacturing and assembly process. Accordingly in this study, H/W test-bed system for reliability evaluation of sliding cover has been developed to obtain proper reference data for design of new model, prevention trouble (failure mode), and improvement of quality and lift cycle extremely for advanced mother machinery.

  • PDF

Recent Developments in Health Appraisal and Life Extension of Mechanical Systems

  • Cowan, Richard S.;Winer, Ward O.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.15-19
    • /
    • 1995
  • Learning from the failure of mechanical systems is a necessity, given that it is the understanding of how and why things fail that generates effective redesign. This subsequently enables the technology that surrounds us to become more reliable, safer, and more economical by extending component life and minimizing the wasteful decisions made to replace systems that am either sound for continued operation could be easily repaired. Considerations for cost-effective decision making, so as to promote healthy machinery, equipment, and structures, are discussed in terms of learning from failure analysis, improving via reliability engineering, and achieving longevity through integrated diagnostics.