• Title/Summary/Keyword: MachineLearning

Search Result 5,654, Processing Time 0.029 seconds

Comparison of theoretical and machine learning models to estimate gamma ray source positions using plastic scintillating optical fiber detector

  • Kim, Jinhong;Kim, Seunghyeon;Song, Siwon;Park, Jae Hyung;Kim, Jin Ho;Lim, Taeseob;Pyeon, Cheol Ho;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3431-3437
    • /
    • 2021
  • In this study, one-dimensional gamma ray source positions are estimated using a plastic scintillating optical fiber, two photon counters and via data processing with a machine learning algorithm. A nonlinear regression algorithm is used to construct a machine learning model for the position estimation of radioactive sources. The position estimation results of radioactive sources using machine learning are compared with the theoretical position estimation results based on the same measured data. Various tests at the source positions are conducted to determine the improvement in the accuracy of source position estimation. In addition, an evaluation is performed to compare the change in accuracy when varying the number of training datasets. The proposed one-dimensional gamma ray source position estimation system with plastic scintillating fiber using machine learning algorithm can be used as radioactive leakage scanners at disposal sites.

Lane Detection Based on Inverse Perspective Transformation and Machine Learning in Lightweight Embedded System (경량화된 임베디드 시스템에서 역 원근 변환 및 머신 러닝 기반 차선 검출)

  • Hong, Sunghoon;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • This paper proposes a novel lane detection algorithm based on inverse perspective transformation and machine learning in lightweight embedded system. The inverse perspective transformation method is presented for obtaining a bird's-eye view of the scene from a perspective image to remove perspective effects. This method requires only the internal and external parameters of the camera without a homography matrix with 8 degrees of freedom (DoF) that maps the points in one image to the corresponding points in the other image. To improve the accuracy and speed of lane detection in complex road environments, machine learning algorithm that has passed the first classifier is used. Before using machine learning, we apply a meaningful first classifier to the lane detection to improve the detection speed. The first classifier is applied in the bird's-eye view image to determine lane regions. A lane region passed the first classifier is detected more accurately through machine learning. The system has been tested through the driving video of the vehicle in embedded system. The experimental results show that the proposed method works well in various road environments and meet the real-time requirements. As a result, its lane detection speed is about 3.85 times faster than edge-based lane detection, and its detection accuracy is better than edge-based lane detection.

Machine Learning-based Prediction of Relative Regional Air Volume Change from Healthy Human Lung CTs

  • Eunchan Kim;YongHyun Lee;Jiwoong Choi;Byungjoon Yoo;Kum Ju Chae;Chang Hyun Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.576-590
    • /
    • 2023
  • Machine learning is widely used in various academic fields, and recently it has been actively applied in the medical research. In the medical field, machine learning is used in a variety of ways, such as speeding up diagnosis, discovering new biomarkers, or discovering latent traits of a disease. In the respiratory field, a relative regional air volume change (RRAVC) map based on quantitative inspiratory and expiratory computed tomography (CT) imaging can be used as a useful functional imaging biomarker for characterizing regional ventilation. In this study, we seek to predict RRAVC using various regular machine learning models such as extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and multi-layer perceptron (MLP). We experimentally show that MLP performs best, followed by XGBoost. We also propose several relative coordinate systems to minimize intersubjective variability. We confirm a significant experimental performance improvement when we apply a subject's relative proportion coordinates over conventional absolute coordinates.

A Study on Protecting Privacy of Machine Learning Models

  • Lee, Younghan;Han, Woorim;Cho, Yungi;Kim, Hyunjun;Paek, Yunheung
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.61-63
    • /
    • 2021
  • Machine learning model gained the popularity in recent years as multi-national companies have incorporated machine learning in their services. Such service is called machine learning as a service (MLaSS). Such services are provided to users based on charge-per-query which triggers the motivations for adversaries to steal the trained victim model to reduce the cost of using the service. Therefore, it is important for companies that provide MLaSS to protect their intellectual property (IP) against adversaries. It has been arms race between the attack and defence in a context of the privacy of machine learning models. In this paper, we provide a comprehensive study of recent development in protecting privacy of machine learning models.

Evaluation performance of machine learning in merging multiple satellite-based precipitation with gauge observation data

  • Nhuyen, Giang V.;Le, Xuan-hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.143-143
    • /
    • 2022
  • Precipitation plays an essential role in water resources management and disaster prevention. Therefore, the understanding related to spatiotemporal characteristics of rainfall is necessary. Nowadays, highly accurate precipitation is mainly obtained from gauge observation systems. However, the density of gauge stations is a sparse and uneven distribution in mountainous areas. With the proliferation of technology, satellite-based precipitation sources are becoming increasingly common and can provide rainfall information in regions with complex topography. Nevertheless, satellite-based data is that it still remains uncertain. To overcome the above limitation, this study aims to take the strengthens of machine learning to generate a new reanalysis of precipitation data by fusion of multiple satellite precipitation products (SPPs) with gauge observation data. Several machine learning algorithms (i.e., Random Forest, Support Vector Regression, and Artificial Neural Network) have been adopted. To investigate the robustness of the new reanalysis product, observed data were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the machine learning model showed higher accuracy than original satellite rainfall products, and its spatiotemporal variability was better reflected than others. Thus, reanalysis of satellite precipitation product based on machine learning can be useful source input data for hydrological simulations in ungauged river basins.

  • PDF

Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations (경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.

Face Recognition using Correlation Filters and Support Vector Machine in Machine Learning Approach

  • Long, Hoang;Kwon, Oh-Heum;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.528-537
    • /
    • 2021
  • Face recognition has gained significant notice because of its application in many businesses: security, healthcare, and marketing. In this paper, we will present the recognition method using the combination of correlation filters (CF) and Support Vector Machine (SVM). Firstly, we evaluate the performance and compared four different correlation filters: minimum average correlation energy (MACE), maximum average correlation height (MACH), unconstrained minimum average correlation energy (UMACE), and optimal-tradeoff (OT). Secondly, we propose the machine learning approach by using the OT correlation filter for features extraction and SVM for classification. The numerical results on National Cheng Kung University (NCKU) and Pointing'04 face database show that the proposed method OT-SVM gets higher accuracy in face recognition compared to other machine learning methods. Our approach doesn't require graphics card to train the image. As a result, it could run well on a low hardware system like an embedded system.

COMPARATIVE STUDY OF THE PERFORMANCE OF SUPPORT VECTOR MACHINES WITH VARIOUS KERNELS

  • Nam, Seong-Uk;Kim, Sangil;Kim, HyunMin;Yu, YongBin
    • East Asian mathematical journal
    • /
    • v.37 no.3
    • /
    • pp.333-354
    • /
    • 2021
  • A support vector machine (SVM) is a state-of-the-art machine learning model rooted in structural risk minimization. SVM is underestimated with regards to its application to real world problems because of the difficulties associated with its use. We aim at showing that the performance of SVM highly depends on which kernel function to use. To achieve these, after providing a summary of support vector machines and kernel function, we constructed experiments with various benchmark datasets to compare the performance of various kernel functions. For evaluating the performance of SVM, the F1-score and its Standard Deviation with 10-cross validation was used. Furthermore, we used taylor diagrams to reveal the difference between kernels. Finally, we provided Python codes for all our experiments to enable re-implementation of the experiments.

A Classification Model for Illegal Debt Collection Using Rule and Machine Learning Based Methods

  • Kim, Tae-Ho;Lim, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.93-103
    • /
    • 2021
  • Despite the efforts of financial authorities in conducting the direct management and supervision of collection agents and bond-collecting guideline, the illegal and unfair collection of debts still exist. To effectively prevent such illegal and unfair debt collection activities, we need a method for strengthening the monitoring of illegal collection activities even with little manpower using technologies such as unstructured data machine learning. In this study, we propose a classification model for illegal debt collection that combine machine learning such as Support Vector Machine (SVM) with a rule-based technique that obtains the collection transcript of loan companies and converts them into text data to identify illegal activities. Moreover, the study also compares how accurate identification was made in accordance with the machine learning algorithm. The study shows that a case of using the combination of the rule-based illegal rules and machine learning for classification has higher accuracy than the classification model of the previous study that applied only machine learning. This study is the first attempt to classify illegalities by combining rule-based illegal detection rules with machine learning. If further research will be conducted to improve the model's completeness, it will greatly contribute in preventing consumer damage from illegal debt collection activities.

Response prediction of laced steel-concrete composite beams using machine learning algorithms

  • Thirumalaiselvi, A.;Verma, Mohit;Anandavalli, N.;Rajasankar, J.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.399-409
    • /
    • 2018
  • This paper demonstrates the potential application of machine learning algorithms for approximate prediction of the load and deflection capacities of the novel type of Laced Steel Concrete-Composite (LSCC) beams proposed by Anandavalli et al. (Engineering Structures 2012). Initially, global and local responses measured on LSCC beam specimen in an experiment are used to validate nonlinear FE model of the LSCC beams. The data for the machine learning algorithms is then generated using validated FE model for a range of values of the identified sensitive parameters. The performance of four well-known machine learning algorithms, viz., Support Vector Regression (SVR), Minimax Probability Machine Regression (MPMR), Relevance Vector Machine (RVM) and Multigene Genetic Programing (MGGP) for the approximate estimation of the load and deflection capacities are compared in terms of well-defined error indices. Through relative comparison of the estimated values, it is demonstrated that the algorithms explored in the present study provide a good alternative to expensive experimental testing and sophisticated numerical simulation of the response of LSCC beams. The load carrying and displacement capacity of the LSCC was predicted well by MGGP and MPMR, respectively.