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Seong-Uk Nam, Sangil Kim ∗, HyunMin Kim, and YongBin Yu

Abstract. A support vector machine (SVM) is a state-of-the-art machine

learning model rooted in structural risk minimization. SVM is underesti-
mated with regards to its application to real world problems because of

the difficulties associated with its use. We aim at showing that the perfor-

mance of SVM highly depends on which kernel function to use. To achieve
these, after providing a summary of support vector machines and kernel

function, we constructed experiments with various benchmark datasets to

compare the performance of various kernel functions. For evaluating the
performance of SVM, the F1-score and its Standard Deviation with 10-

cross validation was used. Furthermore, we used taylor diagrams to reveal

the difference between kernels. Finally, we provided Python codes for all
our experiments to enable re-implementation of the experiments.

1. Motivation and Goal

SVMs are state-of-the-art machine learning techniques with their root in struc-
tural risk minimization [57, 58]. Additionally, SVMs have been successfully
applied to a variety of real-world problems [4] such as particle identification,
face recognition, text categorization, bioinformatics, and problems in civil and
electrical engineering. However, except for some successful examples, SVM is
underestimated with regards to its application to real world problems, because
No one easily knows how to adapt SVM in their applications.

Here, all we want to say is that trying vaiouse kernel funtion is a simple
solution to use SVM for thier applications. However, Not only do many studies
use rbf kernels and polynomial kernels, but many libraries also provide only two
kernels embedded in kernel functions. For this reason, we provide a summary
of the support vector machines and kernel functions and show how different
results can be obtained with various kernel functions.
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Remainder of this paper is organized as follows. Section 2 summarizes var-
ious studies that have solved problems by applying a special kernel. It also
classifies and describes several different types of kernels. Section 3 summarizes
the experimental designs and results based on the UCI Dataset. Finally, Section
4 discusses the results of this study.

2. Previous Work

SVM, as a hard margin classifier, was proposed by Bernhard E. Boser, Isabelle
M. Guyon, and Vladimir N. Vapnik [1]. It has been developed continuously since
it was first proposed. Many efforts have been made to apply it to various real
problems [4], and to improve learning and inference time of SVM by enhancing
the algorithm [82, 11] and using the GPU, FPGA device [80, 81]. New kernel
functions have also been continuously suggested and studied [6, 9]. Furthermore,
there are many helpful surveys on SVM [2, 3, 5, 7, 8]. In this section, we want
to give a brief introduction of SVM including the notation, formula, and the
kernel function.

2.1. Notation

Necessarily, we will use some datasets, hypothesis function, and cost functions.
In this section, therefore, before the study detail of SVM, we will consider some
basic definitions and concepts in the ordinal machine learning task.
In the ordinal machine learning task, we must first use some datasets. WLOG,
the dataset can be represented by n× (m+ 1) matrix. Let the matrix D denote
the dataset. Simply, n represents the number of examples of datasets, and m+1
expresses the number of variables. The variables are divided into m explanatory
variables Xn×m and 1 target variable Yn×1, simply X and Y . The equation can
be expressed as

D =
[
Xn×m Yn×1

]
, simply

[
X Y

]

=


x(1) y(1)

x(2) y(2)

...
...

x(n) y(n)



=


x

(1)
1 x

(1)
2 · · · x

(1)
m y(1)

x
(2)
1 x

(2)
2 · · · x

(2)
m y(2)

...
...

...
...

x
(n)
1 x

(n)
2 · · · x

(n)
m y(n)



where (x(i), y(i)) denotes the i-th example with x(i) = (x
(i)
j )j=1···m, and x

(i)
j

means j-th variable of the i-th example. Occasionally, if there is no confusion,
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we omit the notation (i) of x(i), x
(i)
j , and y(i) as x, xj , and y for convenience.

We use x, x′ to represent only two different examples (in section 2.3) rather
x(i), x(j). And we call x as a pattern. Let a nonempty set X denote the domain,
and Y denote the target space. Xn×m and Yn×1, simply X and Y , are originated
from the domain X and the target space Y, respectivly. This means that X,Y
is just a sample of (X,Y). We define a feature space by mapping the data into a
higher-dimensional space, to obtain a better representation of the patterns. The
feature map is denoted by Φ, and we have the feature space H as a co-domain
of the map:

Φ : X→ H
After transforming all the pattern x ∈ X to the feature space, we get the new
dataset D′ with a high-dimension.

D′ =


Φ(x(1))1 Φ(x(1))2 · · · Φ(x(1))m′ y(1)

Φ(x(2))1 Φ(x(2))2 · · · Φ(x(2))m′ y(2)

...
...

...
...

Φ(x(n))1 Φ(x(n))2 · · · Φ(x(n))m′ y(n)



Definition 2.1. (x, y, hθ(x)) ∈ X × Y × Y denote the triplet consisting of a
example x, an observation y and a prediction hθ(x). The map c : X×Y ×Y →
[0,∞) with the property c(x, y, y) = 0 for all x ∈ X and y ∈ Y will be called a
loss function.

Definition 2.2. For a given dataset D and a loss function c, we define the cost
function J(θ) with the sum of loss over all examples, as

J(θ) =

n∑
i=1

c(x(i), y(i), hθ(x
(i))) (2.1)

Similarly, we define the regularized cost function Jreg(θ) as

Jreg(θ) =

n∑
i=1

c(x(i), y(i), hθ(x
(i)) + λΩ(hθ(x)) (2.2)

In the equation above, λ is a constant. Using this cost function, we can find
the best parameter which gives more accurate predictions in sense of given cost
function. We define the best parameter as optimal parameter, and it is denoted
by θ0

2.2. The Formulation

Most machine learning algorithms are determined by the hypothesis function,
loss function, and regularization term. SVM may appear different from other
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Figure 1. The left one represents the hinge loss for classifi-
cation problem, defined as c(x, y, hθ(x)) = max(0, 1− yhθ(x)).
Right one is for the epsilon intensive loss for regression problem,
c(x, y, hθ(x)) = max(0, |y − hθ(x)| − ε).

machine learning models as it needs to solve the constrained optimization prob-
lem. However, it can be generalized in the same way as follows [10]. The SVM
classifier (regression) is obtained by:


hθ(x) = wx+ b

c(x, y, hθ(x)) = max(0, 1− yhθ(x))

Ω(hθ(x)) = 1
2‖w‖

2


hθ(x) = wx+ b

c(x, y, hθ(x)) = max(0, |y − hθ(x)| − ε)
Ω(hθ(x)) = 1

2‖w‖
2

In the above mentioned equation, the loss function that defines the SVM classi-
fier is known as hinge loss, and the loss function that defines the SVM regressor
is known as an epsilon intensive loss fig. 1. In particular, there are several
options for the loss function that defines the SVM regressor such as epsilon in-
tensive loss, Laplacian loss, Gaussian loss, Hubers robust loss, polynomial loss,
and piecewise polynomial loss [10, 2]. In this study, we only used the epsilon
intensive loss. To train the SVM model in accordance with the data in these
settings, the parameters must be trained to minimize the cost function. How-
ever, the gradient descent method cannot be simply applied due to the nature
of the SVMs loss function. Therefore, it is needed to consider the dual problem
corresponding to the original problem, as follows [10]:



COMPARATIVE STUDY OF SUPPORT VECTOR MACHINES 337



hθ(x) =

m∑
i=1

αiyi < x, xi > +b

maximize =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj < xi, xj >

subject to


αi ≥ 0, i = 1, · · · ,m,
m∑
i=1

αiyi = 0



hθ(x) =

m∑
i=1

(α∗i − αi) < xi, x > +b

maximize


− 1

2

m∑
i,j=1

(α∗i − αi)(α∗j − αj) < xi, xj >

−ε
m∑
i=1

(α∗i + αi) +

m∑
i=1

yi(α
∗
i − αi),

subject to

m∑
i=1

(αi − α∗i ) = 0 and αi, α
∗
i ∈ [0, C/m]

2.3. Kernel Functions

The process of obtaining meaningful features from the given data determines
the performance of the algorithm. In particular, achieving a high score in a
machine learning algorithm competition such as Kaggle is determined in most
cases, in which some features were found, rather than the model used. The
process of creating these variables is easy when we use SVM, because it is
closely related to the kernel function. Let us assume that < x(i), x(j) > is
calculated by < Φ(x(i)),Φ(x(j)) >, considering a specific feature space. The
kernel function can be understood as a function that calculates the inner product
in a substituted feature space.

Definition 2.3. Let we define a similarity measure K of the form K : X×X →
R, which is a function that for given two patterns x(i) and x(j) returns a real
number characterizing their similarity. For a given feature map Φ, if there exists
a function K that satisfies

K(x(i), x(j)) =< Φ(x(i)),Φ(x(j)) >,

we called such a function K as the kernel function.

There are many kernel functions (as summarized in 2.3.2). Kernel methods
map the data onto higher dimensional spaces with the aim that the data could
become more easily separated or better structured in this higher dimensional
space. This is derived from the fact that, if we first map our input data onto a
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higher dimensional space, a linear algorithm operating in this space will behave
non-linearly in the original input space, known as kernel trick (as summarized
in 2.3.1). There are also some conditions on kernel functions to be satisfied for
the kernel trick. It has to be symmetric and positive definite.

2.3.1. The Kernel Trick.

Theorem 2.4. For any symmetric function K : X ×X → R that satisfies the∫
f(x)K(x, x′)f(x′)dxdx′ ≥ 0 for all f ∈ L2, there exist functions Φ : X → R

and λi ≥ 0 such that K(x, x′) =
∑
i λiΦi(x)Φi(x

′) for all x, x′ ∈ X.

Therefore, for the kernel function that satisfies the symmetric and positive def-
inite properties, the corresponding feature space can be used by calculating the
K(x(i), x(j)) in place of < Φ(x(i)),Φ(x(j)) >, even if the accurate equation for
Φ() is unknown. Owing to this theorem, even infinite dimensional feature spaces
can be used.

If the shape of the feature map can be predicted, trials and errors can be
reduced by selecting and using an SVM kernel that is appropriate for the
problem situation. Furthermore, in a situation that requires the creation of
new features, an insight can be obtained by applying a different kernel of the
SVM. One example of kernel functions for which the corresponding feature
space has been revealed is a polynomial kernel. For example, if we consider
the second-order polynomial kernel k(x, y) =< x, y >2 for data with two vari-

ables, the corresponding feature map is Φ(x = (x1, x2)) → (x2
1, x

2
2,
√

2x1x2).
And if we consider the rbf kernel; k(x, y) = exp((x − y)2), the correspond-

ing feature map is Φ(x = (x1, x2)) → (x1, x2, x
2
1/2, x

2
2/2,
√

2x1x2/2, ) because
exp((x−y)2) =

∑
(kd(x, y)/n!). Except for the above mentioned two kernels for

which a specific feature map corresponds to the kernel function, several kernel
functions described in 2.2.2 have not yet been analyzed. Many studies have
been conducted on this subject [11, 12, 31]. In particular, Vedaldi, Andrea, Zis-
serman, and Andrew [11] analyzed which feature map the kernel corresponds
if dataset has only one explanatory variable. For the stationary kernels and
homogeneous kernel, they define the signature of kernel. Using this signature,
they obtained the corresponding feature space. In fact, it can be applied to
multiple variables cases by using addition and multiplication properties. How-
ever, from the case where the kernel is directly applied to multiple variables,
different results are realized.

2.3.2. Review of Kernels.

Dot Product kernels
Linear (trivial) kernel is given by k(x, y) =< x, y >. This kernel function

has the same meaning as the basic SVM. With regards to the linear kernel,
many efforts have been made to shorten the time of training and inferencing
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parts of SVM, and it takes linear time with the number of training examples
[71].

Polynomial kernel is given by k(x, y) =< x, y >α1 +α2. The order of
the polynomial term is determined by the parameter α1, and the feature space
becomes α1-th order terms. When α1 = 1, it perfectly matches the linear kernel.
It is known to show particularly good performance when the data is normalized.
It has been used in a study to classify different types of lymphoma [28], and
demonstrated good performance in the termite detection problem [77]. In this
study, we set a parameter α2 as 0

Hyperbolinc tangent kernel is given by k(x, y) = tanh(< x, y >). This
function is well known as the activation function. This function is condition-
ally positive definite. It has been used in a study to detect different types of
lymphoma[72].

Vovks real polynomial, this kernel is given by k(x, y) = 1−<x,y>α1

1−<x,y> [27].

This kernel can be written as k(ξ) =
∑d
n=1 ξ

n, hence all the coefficients equal
to 1. This means that this kernel can be used regardless of the dimensionality
of the input space. Similarly, we can analyze the an infinite power series.

Vovks infinite polynomial, this kernel is given by k(x, y) = 1
1−<x,y> [27].

This kernel can be written as k(ξ) =
∑
n≥0 ξ

n. hence, all the coefficients equal
to 1. This suggests poor generalization properties.

Stationary Kernels
Rbf (gaussian) kernel is given by k(x, y) = exp(||x − y||2/2α1

2). This
corresponds to the infinite dimensional feature space. This kernel is known to
show good performance in image classification problems such as hand-writing
recognition. This kernel has been applied to classify different types of lymphoma
[28], Arabic characters [29], and to predict coal price problem [36].

Laplacian kernel (or exponential kernel) is given by k(x, y) = exp(‖x−y‖α1
).

It is similar to the rbf kernel. It demonstrated good performance in classifying
Arabic characters [29]. It has also been applied to problems related to object
tracking [88].

Rational quadratic kernel (or cauchy kernel), this kernel is given by

k(x, y) = 1 − ‖x−y‖2
‖x−y‖2+α1

. It can be used as an alternative when the use of the

Gaussian becomes significantly expensive. It is a long-tailed kernel and can
be used to realize long-range influence and sensitivity over the high dimension
space. It has been applied to the problem of classifying Arabic characters [29].

Multiquadric kernel, this kernel is given by k(x, y) =
√
‖x− y‖2 + α1

2. It
is summarized in the paper [92]. It has been applied to classify Arabic characters
[29], and to detect images [73].

Inverse multiquadric kernel, this kernel is given by k(x, y) = 1√
‖x−y‖2+α1

2
.

It is summarized in the paper [92]. It has also been applied in the classification
of Arabic characters [29], and detection of images [73].
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Circular kernel, this kernel is given by k(x, y) = 2
π arccos(−T )− 2

πT
√

1− (T )2

if ‖x − y‖ < α1, zero otherwise, where T = ‖x−y‖
α1

. This function is positive

definite in R2. The circular kernel is used in geostatic applications. It is sum-
marized in [74]. In this study, it is applied to image recognition.

Spherical kernel, this kernel is given by k(x, y) = 1− 3
2
‖x−y‖
α1

+ 1
2 (‖x−y‖α1

)3

if ‖x − y‖ < α1, zero otherwise. This function is positive definite in R3. It is
summarized in [74], where it is applied to image recognition.

Wave kernel, this kernel is given by k(x, y) = α1

‖x−y‖ sin(‖x−y‖α1
). It shows

good performance in crude oil price data [75]. If ‖x − y‖ equals to 0, we set
k(x, y) as 1.

Power kernel, this kernel is given by k(x, y) = −‖x−y‖α1 . It is an example
of scale-invariant kernel [76] and it is only conditionally positive definite.

Log kernel, this kernel is given by k(x, y) = − log(‖x− y‖α1 + 1). The log
kernel seems to be particularly appropriate for images. It has been applied to
classify the domain of text [95].

generalized t-student kernel, this kernel is given by k(x, y) = 1
1+‖x−y‖α1

Other Kernels
ANOVA kernel is given by k(x, y) =

∑
(exp(−α1(x− y)2))α2 . This kernel

was suggested by [83]. It showed good performance in the classification of web
pages [30] and the prediction of coal prices [36].

Spline kernel, this kernel is given by k(x, y) =
∏d
i=1[1+xiyi+xiyimin(xi, yi)−

xi+yi
2 min(xi, yi)

2 + min(xi,yi)
3

3 ]. This kernel is derived in [78].

Chi-square kernel, this kernel is given by k(x, y) = 1−
∑n
i=1

2xiyi
(xi+yi)

. It is

has been applied for recognizing hand gestures [93].
Histogram intersection kernel, this kernel is given by k(x, y) =

∑n
i=1 min(xi, yi).

The histogram intersection kernel is also known as the min kernel, and it has
been proven useful in image classification [79].

Hellingerss kernel, this kernel is given by k(x, y) =
∑n
i=1

√
xiyi. IIt has

been applied to retrieve images [94].
There are other kernels such as B-spline kernel [91], Bessel kernel [90],

generalized histogram intersection kernel [79], Bayesian kernel [35],
wavelet kernel [89].

3. Experiment

3.1. Experimental Design

We planned this experiment to investigate which kernel functions are appropri-
ate in various situations. Therefore, we measured the score of each kernel for
specific data and summarized the results. For this experiment, the following
was considered: sufficiently diverse benchmark dataset, possible parameters for
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each kernel, reasonable score for evaluation, and selection of diagrams to ef-
fectively show the results of the experiment. Finally, the issues that occurred
during this experiment are summarized in this section. This experiment was
designed to enable 100% re-implementation and was completely shared in the
GitHub repository(https://github.com/000namc/python-sklearn-svm-kernels).

3.1.1. Benchmark dataset. Many studies have used the UCI dataset [14] to
verify the performance of the proposed model [31, 32, 33, 34]. Among them, we
selected five problems related to classification in the UCI dataset (breast cancer
[13], yeast [20], segmentation, waveform [21], and leaf [15]) and five problems
related to regression (wine [22], crime [16], airfoil [17], fire [18], and fish [19]).
We choose a dataset which has adequate number of examples and columns
so that it generally represents datasets as much as possible. Nevertheless, in
the experiment, if a dataset has a lot of examples, the model training speed de-
creases sharply. Therefore, we used datasets with a smaller number of examples.
Furthermore, a basic feature engineering such as one-hot-encoding was applied
when necessary. All explanatory variables were normalized, and some meaning-
less columns were removed. Finally, the target variable of the regression dataset
was also normalized in order to compare the results within the same range. All
the codes for this preprocessing procedure are shared in the GitHub repository
to enable re-implementation as mentioned above. The following Table 1 out-
lines the characteristics of each dataset, including the purpose of the data, the
number of examples, the number of features, and the number of classes.

3.1.2. Model parameter. We aim to compare the results of each kernels. How-
ever, even with one kernel, different results can be obtained when the cor-
responding kernel parameters are changed. Therefore, we regard the highest
score obtained with a varying parameter for a specific kernel as the score
of that kernel. It is also impossible to investigate all possibilities because
of the limited computing resources. Therefore, instead of using all the pa-
rameters, we selected one representative parameter that causes the largest
change in a given kernel function, and the results were obtained while vary-
ing this parameter. The parameter that had the largest meaning is α1. In
the above mentioned definitions of the kernel functions, the parameter that
has the largest meaning for each kernel is indicated as α1. The following pa-
rameters for each kernel were used: linear: [0], polynomial: [2, 5, 8], hyper-
bolic tangent: [0], Vovks real polynomial: [2, 5, 8], Vovks infinite polynomial:
[0], Gaussian: [0.5, 1, 5], Laplacian: [0.5, 1, 5], rational quadratic: [1, 10, 100],
multi-quadratic: [1, 5, 10], inverse multi-quadratic: [1, 5, 10], circular: [0.5, 1, 5],
spherical: [0.5, 1, 5], wave: [0.5, 1, 5], power: [2, 2.2, 2.5], log: [2, 5, 8], general-
ized t-student: [2, 5, 8], ANOVA: [0.5, 1, 5], spline: [0], chi square: [0], histogram
intersection: [0], and Hellingers: [0].
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Data name Purpose
Number
of ex-
amples

Number
of

features

Number
of

labels
Type

Breast
Cancer

Predicting breast cancer
(whether it is benign or
malignant)

683 9 2 Classification

Yeast
Predicting the cellular
localization sites of proteins

1484 8 10 Classification

Segmenta
tion

The instances were drawn
randomly from a database
of 7 outdoor images.
Classifying the pictures

210 19 7 Classification

Waveform

Each class is generated from
a combination of 2 of 3
”base” waves. Classifying
the waves.

5000 21 3 Classification

Leaf
Predicting the species for
given texture feature of the
leaf

340 15 30 Classification

Wine
Predicting wine quality
based on physicochemical
tests

1599 11 - Regression

Crime
Predicting Total number of
violent crimes per 100K
population

1994 100 - Regression

Airfoil
Predicting of Sound
Pressure Level in Various
Experiments

1503 5 - Regression

Fire
Predicting of burnt areas in
case of fire

517 29 - Regression

Fish

Predicting quantitatively
acute aquatic toxicity
towards the fish;
Pimephales promelas

908 6 - Regression

Table 1. data description

3.1.3. Model validation. To obtain reliable results, we performed a 10-fold-
cross-validation for each case. In this process, we recorded two different mea-
sures: accuracy and the standard deviation of the accuracy in a 10-fold training
set and the test set. For the classification problem, we used Accuracy Score
as accuracy, and for the regression problem, we used (3 − RMSE)+, where
(x)+ = max(0, x), as accuracy. In other words, if RMSE exceeds three, the
score is insignificant, and we regarded (3−RMSE)+ = 0 as the worst case. We
want to say that it is not enough to see only the accuracy to evaluate each case.
It is also not a good result when the deviation is high no matter the accuracy.
Therefore, we used a score of a slightly new perspective based on the cosine law
of triangle (c2 = a2 + b2 − 2ab cosφ): cosine-score with two different measures
related by performance and deviation of the 10-fold.

cosine-score2
pattern = A2 +B2 − 2 ·A ·B ·R

Where,
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O Reference

Pattern

accuracypattern ”Cosine-score”

accuracyreference

cos−1R

Figure 2. The cosine-score

A = accuracyreference

B = accuracypattern

R = 1− 1/k ×min(standard deviationpattern, k)

To understand the cosine-score, we will first consider the score of each model
as a point consisting of an ordered pair (accuracy, R). R satisfies the condition
0 ≤ R ≤ 1. If R = cosπ, it satisfies 0 ≤ φ = cos−1R ≤ π

2 . In this equation,
the reference point represents the highest possible score. The pattern point
represents score for some data. cosine-score enables the evaluation of the model
by simultaneously considering these pair. In other words, a good score is not
given even if one measure is high. A constant k is used as a weight parameter
between these pair: a higher value of k indicates a higher ratio of the accuracy in
the cosine-score. In our experiment, k = 0.2 was used. In addition, the reference
point was set to (1, 1) and (3, 1) for classification and regression problem. For
accuracy, 100% is the perfect score, for (3 − RMSE)+, 3 is the perfect score,
and for R, 1 is the perfect score. Based on this analysis, the scores can be
represented as follows Fig. 2.

3.1.4. Result Visualization. The Taylor diagram provides a method of graph-
ically summarizing the resemblance between a pattern (or a set of patterns)
and the observations(or a reference) [23]. One characteristic of this graph is
that it coordinates the two measures representing the graph and the distance
to the reference point. This can be observed at a glance. Furthermore, unlike
the data representation in the orthogonal coordinate system, the region close to
the reference point is enlarged, thereby facilitating observation. Originally in
the proposed study, the similarity between two patterns is quantified in terms
of their correlation, the difference between their root-mean-square and the am-
plitude of their variations (represented by their standard deviations). However,
in this study, we measured the similarity by using the average of the 10-fold
accuracy and the R derived by standard deviation of 10-fold accuracy. we set a
reference point positioned optimally in both measures: accuracy and variation.
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We acquired a contour graph from it; hence, we had a good visualization of our
proposed score.

We proposed another graph Top-N Counter we named. This diagram counts
the number of experiments which recorded the top rank for each candidate.
Here, the various datasets were the experiments, and the kernels candidates.
The character N denotes the criterion to be in the top rank. For example, if
N = 5, this counts the number of experiments to record in the top five ranks.
Adequate value for N should be chosen depending on the given problem. In our
case, as there were 20 candidates, we choose N = 10, and to draw this diagram,
similar to the Taylor diagram, we considered the cosine-score.

3.1.5. Used code. Python is a good language for getting and sharing informa-
tion because it is used by many people and many references exist. We also
planned this experiment using the Python language. For data preprocessing,
we used the pandas package [25], and for the SVM model, we used the scikit-
learn package [24], which implemented the SVM based on the libsvm. The
function provided by the scikit-learnis designed to use linear kernel, polynomial
kernel, or Gaussian kernel by option. To use other kernel functions, we should
calculate and input the gram matrix of the kernel that satisfies some condi-
tions. The gram-matrix was used to store the kernel value of each example and
it was defined as G(i, j) = K(x(i), x(j)). Therefore, the process of calculating
the gram matrix of each kernel is included in our experiment process in order
to use various kernels that we have considered. Furthermore, with the Taylor
diagram for effective visualization, we used a revised code shared in GitHub
by Yannick Copin [26]. All the Python codes for this experiment using the
above packages are shared in the GitHub repository that we provided to allow
re-implementation.

3.1.6. Implementation issue. There were several issues with our experiments.
First, the implementation of SVM, using the scikit-learn package considers max
iteration, and error toleration as stopping criteria. It also takes a long time
to satisfy the default stopping criterion in the experiment for some data with
regression problems. To solve this problem, the max iteration was set to 10000.
If it does not converge even under this condition, the lowest score was given,
considering that this problem cannot be generalized using the kernel and param-
eter. The second problem is overflow error caused by a numerous or undefined
calculations such as division by zero in the gram-matrix calculation process.
The lowest score was given to this case as well. Thirdly, the data correspond-
ing to R = 0 was excluded from performance comparison because this reveals
the extreme poor performance in the definitions of R and accuracy. Fourth,
the result is dependent on how to divide the 10-fold because our cosine-score is
obtained by 10-fold-cross-validation.
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3.2. Experiment results

We performed 10-cross-validation for each given dataset, kernel, and correspond-
ing parameter. The results of our experiment could be listed in a table having
about 600 rows for the number of datasets, the number of kernels, and the num-
ber of parameters of each kernel (the complete table can be obtained from in
the GitHub repository). These results are summarized in Taylor diagrams and
Top-10 Counter for classification and regression problems.

3.2.1. Classification Problem. In the Taylor diagram Fig. 3, the radius axis
and the arc axis represent the Accuracy Score and R, respectively. The first
notable result is that the cosine-score difference of the kernels is significant
in every dataset as expected before designing this experiment. Each dataset
had different sets of fitted kernels. The kernels that showed good scores were
power kernel, rational quadratic kernel, and Laplacian kernel (breast cancer
dataset); generalized t-student kernel, inverse multi-quadratic kernel, and Vovks
real polynomial kernel (yeast dataset); gaussian kernel, histogram intersection
kernel, and linear kernel (segmentation dataset); ANOVA kernel, Laplacian
kernel, and log kernel (waveform dataset); log kernel, histogram intersection
kernel, and power kernel (leaf dataset). Another finding was that the fitting level
was different for each dataset. Based on the cosine-score, the maximum score
for the waveform dataset was 0.271, 0.326 for the breast cancer dataset, 0.52
for the leaf dataset, 0.551 for the yeast dataset, and 0.614 for the segmentation
dataset. Thus, the scores showed significant differences among the datasets. To
examine them in detail, the multi-quadratic kernel, chi square kernel, and Vovks
infinite polynomial kernel were not given good scores in general. Furthermore,
unlike other datasets, the leaf dataset had significantly different scores for each
kernel.

3.2.2. Regression Problem. In the Taylor diagram Fig. 4, the horizontal axis
and the arc axis represent (3 − RMSE)+and R, respectively. As mentioned
in the explanation of the datasets, each target value was normalized. Thus,
regarding (3−RMSE)+, the graph represents scores from 3 points. This means
fitting all data to point 0 for poor performance. In regression problem too,
the first notable result was that the difference in cosine score of the kernels in
every dataset is significant as expected before designing this experiment. The
kernels that gave the best cosine-score for each dataset were log kernel, inverse
multi-quadratic kernel, and ANOVA kernel (wine dataset); Laplacian kernel,
histogram intersection kernel, and rational quadratic kernel (crime dataset);
and ANOVA kernel, rational quadratic kernel, and Laplacian kernel (airfoil
dataset). As an exception, the fire dataset did not show good scores in all
kernels, and based on the simple RMSE, the histogram intersection kernel,
gaussian kernel, and rational quadratic kernels showed good scores. In the case
of the fish dataset, wave kernel, rational quadratic kernel, and Laplacian kernel
showed good scores. Furthermore, the best score in each dataset was 1.926 for
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Figure 3. The Taylor diagram for the classification problem

fish, 1.830 for wine, 1.630 for crime, and 1.211 for airfoil. Another observation
was that, the polynomial kernel always produced poor results. In the case of
the fire dataset, it could be impossible to fit in the SVM model to solve this
problem because the score was very poor and the reliability of the score was
not very good either. The results showed a tendency of wider diffusion in the
R axis than that of the classification problem, which could be interpreted that
it is simply due to the different range of the accuracy.

Figure 4. The Taylor diagram for the regression problem
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Figure 5. The Top-10 Counter

3.2.3. Top-10 Counter. In the following graph Fig. 5, the y-axis represents
the kernel function, and the x-axis represents the number of datasets of which
the corresponding kernel in the top 10 ranking. The first fact that it can be
seen provides the differences between kernels. The chi square, spline, multi-
quadratic, Vovks infinite polynomial, hyperbolic tangent, and Hellingers kernels
have never been included in top 10 ranking for both classification and regression.
Furthermore, the ANOVA kernel, gaussian kernel, rational quadratic kernel, log
kernel, Laplacian kernel, histogram intersection kernel, Vovks real polynomial
kernel, and inverse multi-quadratic kernel show relatively high scores. There was
also no kernel function that was included in top 10 ranking for every dataset.
In other words, there exists no kernel function that can represent every dataset
well. We want to remark that among the basic kernel functions provided by
the Python scikit-learn package, the linear kernel and polynomial kernel did not
show good scores. The polynomial kernel has never been in top 10 ranking in
the regression problem.
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4. Discussion

The results of this study showed that it was effective to employ kernel functions
for general datasets, such as ANOVA kernel, gaussian kernel, rational quadratic
kernel, log kernel, Laplacian kernel, histogram intersection kernel, Vovks real
polynomial kernel, and inverse multi-quadratic kernel. Therefore, we believe
that the built in kernel functions in various machine learning packages including
the scikit-learn of Python should be improved. Our results are based on the
cosine-score, related to accuracy and the standard deviation of the 10-fold-
validation results. Results with different weights of the two measures can be
obtained through an adjustment of the value of parameter k.
We expect that continued research will be conducted on the kernel functions of
SVM and their corresponding feature spaces. Methods to better utilize existing
kernel functions and innovative new kernels should be developed continuously.
For several kernels that reviewed in this study, the feature spaces represented
by the kernel functions have not been revealed thus far. If these feature spaces
are revealed, the existing kernels can be classified in new ways using common
characteristics and insight on utilizing them can also be obtained. In addition,
proposals for new kernels will be performed more systematically.
Continued efforts to shorten the running time of SVM are also required. In our
experiment, the number of data were limited to 5000. Even with this number,
the model training required a significant amount of time (it required about one
day when using a 20-core CPU and 64GB memory to complete our experiment).
This is still insufficient, considering that the size of dataset used in a general
machine learning model can be as many as one million rows.

Our study requires further improvements in several aspects. First, additional
parameters of the kernel functions need to be examined. Other model param-
eters as well as the regularization parameter should be adjusted. We could
not investigate several possibilities due to the limited resources. However, this
will be possible when the training speed of SVM becomes faster in the future.
Second, additional candidates for the kernel functions should be collected and
organized. Even though newly proposed kernel functions exist, newer possi-
bilities need to be investigated. Third, the shared Python code needs to be
optimized. It still has many parts that can be improved. In particular, the cal-
culation of the gram matrix needs to be improved first. With regards to that,
we always welcome pull requests for our code shared in GitHub.
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