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a b s t r a c t

In this study, one-dimensional gamma ray source positions are estimated using a plastic scintillating
optical fiber, two photon counters and via data processing with a machine learning algorithm. A
nonlinear regression algorithm is used to construct a machine learning model for the position estimation
of radioactive sources. The position estimation results of radioactive sources using machine learning are
compared with the theoretical position estimation results based on the same measured data. Various
tests at the source positions are conducted to determine the improvement in the accuracy of source
position estimation. In addition, an evaluation is performed to compare the change in accuracy when
varying the number of training datasets. The proposed one-dimensional gamma ray source position
estimation system with plastic scintillating fiber using machine learning algorithm can be used as
radioactive leakage scanners at disposal sites.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Currently, both high-level radioactive wastes (HLW) and large
amounts of low-and-intermediate-level radioactive wastes (LILW)
are generated from nuclear power plants as well as medical and
industrial facilities. LILW can be classified into short, medium, and
long-lived waste in accordance with its decay time. This waste is
sealed in radwaste drums before disposal and one of the main is-
sues has been monitoring the leakage of short-and-medium term
radioactive isotopes since there is possibility of leakage due to the
structural weakness or accident in radwaste drums. Scanning the
drums with proper sensors that have rapid radioactive source po-
sition estimation capabilities can help quickly trace the location of
any leak and reduce the risk of wider contamination to the envi-
ronment as well as the operators [1,2].

Various methods of estimating the position of radioactive
sources have been investigated and practically applied. One of
the most prevalent and effective methods is the use of
by Elsevier Korea LLC. This is an
scintillation materials, which react with detectable radiation and
emit visible light. Recently, plastic scintillating optical fiber
(PSOF) has been used as a radioactive source position detector to
scan radwaste drums, providing the position of the leakage and
dose rate in real time [1,3,4]. PSOF is an organic scintillator-type
radiation detector that also performs a light guide role, similar to
conventional optical fiber [5,6]. PSOFs have several advantages
over other conventional detecting materials, such as long length
usability, flexibility, adaptable shape, high water resistance, sta-
bility in magnetic fields and inexpensive manufacturing costs.
Conversely, PSOFs have relatively low light yield and sensitivity
than common inorganic scintillators; however, the use of bundle-
type PSOF detectors can offset these disadvantages [6e8,13,14].

Position estimation of gamma ray sources using a PSOF can be
achieved via three methods. The two classical methods are the
measurement of attenuated intensity of scintillation light and the
measurement of pulse height difference. A more recent method is
the measurement of signal-received time difference, which is
possible owing to the development of high-performance signal
acquisition equipment [5].
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Measurement of signal-received time difference, also known as
the time-of-flight (TOF) method, is based on the fact that the
speed of a light signal remains constant within the scintillation
materials. The time difference of signals received by light-
measuring device located at each end of the PSOF is directly
converted into the position of the source. Previous studies on
estimating the position of gamma ray sources using PSOF de-
tectors with the TOF method, include Nohtomi et al. [8], Soramoto
et al. [9], Emoto et al. [10], Chichester et al. [11] and Gamo et al.
[12]. Detection systems using the TOF method generally have a
high accuracy and resolution. However, there is a high cost for the
data acquisition equipment with a high sampling rate, which is
necessary due to the short decay time of an organic scintillator
such as PSOF.

Measurement of pulse height is mainly used for radionuclide
identification and wide-area surveying [13,14]. Measuring the
pulse at either end of the PSOF and calculating the ratio of pulse
heights enables tracing of the location of the scintillation signals,
because the pulse height is attenuated when it is transmitted
through PSOF. Imai et al. [14] conducted an experiment using a
PSOF detector and photomultiplier tubes to estimate the position
of gamma ray sources by measuring the pulse height ratio. The
main disadvantage of this method is that the accuracy of the
estimated location can vary according to the position at which
scintillation occurs. This is due to the transmission loss of the
signal in PSOF and the quantum efficiency of the light-measuring
device, which change with respect to the wavelength of the signal,
resulting in a deviation of the pulse spectra from exponential
attenuation [15].

Measurement of attenuated intensity of scintillation light is
the simplest method and is based on the assumption that the
signal attenuation due to the scintillating material is linear. One of
the merits of this method is that the system components are
relatively simple and inexpensive. However, the main disadvan-
tage of this system is that the attenuation ratio of signal intensity
and the photon detector efficiency both vary depending on the
wavelength of the scintillation signal [15,16]. This results in an
inaccurate estimation of the position of the source, as the change
in the attenuation coefficient of the scintillation signal is a com-
plex value and not a constant. Moreover, in the applicative area, an
un-collimated radioactive source can decrease the accuracy of
source position estimation. To solve the critical drawback of in-
accuracy, it is essential to determine the nonlinear relationships
between the signal intensity and resultant estimated position,
rather than consider the regular relationships such as exponen-
tial, logarithmic, or linear.

One of the most widely used techniques to determine unknown
and complicated relationships between various parameters ob-
tained by experiments is the use of artificial intelligence (AI) al-
gorithms, such as machine learning (ML) or artificial neural
network (ANN) [17e19]. Several studies for detecting radiation
using AI algorithms have been conducted and indicate the possi-
bility of improvement in detection [20,21].
Table 1
Specific properties of BCF-12.

Properties Value

Emission peak (nm) 435
Decay time (ns) 3.2
# of photons per MeV ~8000
Core refractive index 1.6
Cladding refractive index 1.49
Cladding type Single cladding type
Diameter (mm) 3.0
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In this study, the one-dimensional (1D) gamma ray source po-
sitions are estimated using a PSOF, two photon counters and via
data processing using the ML algorithm. A nonlinear regression
algorithm using the Keras framework in a Python environment is
used to construct the ML model for position estimation of radio-
active sources. The position estimation results using ML are
compared with theoretical position estimation results based on the
same measured data. Various tests are conducted to determine the
improvement in accuracy of the source position estimation, and to
compare the change in accuracy by varying the number of training
datasets of the ML model.
2. Materials and methods

2.1. Materials

Typically, a PSOF consists of a central core surrounded by clad-
ding. The base materials of both the core and cladding are poly-
meric materials such as polystyrene (PS), polyvinyl toluene (PVT),
or polymethyl-methacrylate (PMMA). Organic fluorescent dyes are
normally added to the base material of the core [5]. The difference
between the refractive indices of the core and cladding enables
total internal reflection of light within the core, resulting in the
transmission of light signals to the end of the fiber. The PSOF used
in this study is BCF-12 (Saint Gobain Crystals). BCF-12 is suitable for
a one-dimensional detector to estimate gamma ray source posi-
tions due to its attenuation length and peak wavelength compared
to those of other kinds of PSOFs which are commercially available.
Table 1 lists the major specific properties of BCF-12 [22].

The photon counter used in this study is H11890-210 (Hama-
matsu Photonics). Table 2 lists the major specific properties of
H11890-210 [16].

Fig. 1 shows the experimental setup used to measure the scin-
tillating light signals from a gamma ray source. A strand of BCF-12
PSOF with a length of 1 m is connected to photon counters at both
ends. The customized connectors ensure the distance between the
window of photon counter and PSOF is minimized. The photon
counting data are directly transferred to the computer. The gamma
ray source is positioned 5 cm below the PSOF and moved along the
axis parallel to the PSOF. Measurements are not conducted at the 35
and 65 cm positions because of the location of the support bars that
keep the PSOF in a straight line. The support bars are made of
PMMA to prevent X-ray generations at the support bars.

For the experiment, Co-60 and Cs-137 gamma ray sources are
used. A background count value is subtracted from the data in every
measurement.
2.2. Theoretical method to estimate the position of source

Theoretical estimations of the 1D position of the gamma ray
sources are derived from the photon counting data using the Beer-
Lambert law of attenuation with several assumptions [23]. The
attenuation coefficient is a specific property of the type of PSOF and
is dependent on its diameter, the energy of the gamma radiation,
and the number of photon counts corresponding to intensity, which
is considered as the energy deposited by gamma rays.

From Fig. 2, the number of counted photons can be derived from
equations (1) and (2), and by dividing equation (2) by equation (1),
equation (3) is obtained as follows.

I1 ¼ I0e
�mðL2þxÞ (1)



Table 2
Specific properties of H11890-210.

Properties Value

Spectral response (nm) 230e700
Peak sensitivity wavelength (nm) 400
Typical dark count (s�1) 50
Pulse-pair resolution (ns) 20
Effective area diameter 8 Fig. 2. Geometry schematics for estimating the position of source.
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I2 ¼ I0e
�mðL2�xÞ (2)

I2
I1
¼ e2mx (3)

where In is the light intensity measured at the nth photon counter,
Io is the initial (not attenuated) light intensity, m is the attenuation
coefficient of PSOF, L is the total length of the PSOF, and x is the
position of the gamma ray source.

From equation (3), equations (4) and (5) are obtained. This
proves that the 1D position of the gamma ray source can be ob-
tained through theoretical estimations.

x¼ 1
2m

ln
I2
I1

(4)

P¼ L
2
þ x (5)

where P is estimated position with zero point in one end of PSOF.
The value of the attenuation coefficient used to estimate the

position of the gamma ray source theoretically can be derived
experimentally, using the measured data with equation 6 derived
from equations 4 and 5.
2.3. Machine learning model construction

To estimate the position regardless of the activity of the source,
pre-processed photon counting data are used in ML. Using equa-
tions (7) and (8), the photon counting data are converted from
absolute count values to relative count values.

RC1 ¼
C1

C1 þ C2
(7)
Fig. 1. Experime
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RC2 ¼1� RC1 ¼ C2
C1 þ C2

(8)

where C1 and C2 are the number of photons counted by photon
counters 1 and 2, respectively, and RC is the relative count.

For the construction of the position estimation model and
evaluation process, the Keras framework is used with a Tensorflow
back-end engine in a Python environment. The nonlinear regres-
sion method with a rectified linear unit activation function and
Adam optimizer is used to construct the model [24,25]. Fig. 3 shows
a detailed description of the ML model and the notation Pos cor-
responds to the position of the gamma ray source.

As shown in Fig. 3, the input data include RC1, RC2 and the actual
position of the source in the training process. Two hidden layers
exist with 64 nodes in each layer, and the source position is esti-
mated in the output layer. During the training, the maximum
epochs are set to 200, and 10% of the data are randomly separated
from the training data at each epoch to be used as model validation
data. The validation data are also used as the criterion for the early-
stopping process, by which the process of constructing the ML
model stops if the validation loss does not decrease anymore before
the predetermined number of epochs is over. For the position
estimation of Co-60 and Cs-137 sources, the ML model are made
using Co-60 and Cs-137 training data, respectively. The ML models
are evaluated using test data, which are measured separately from
the training data without any change in the structure of the ML
model.

2.4. Experimental data acquisition results

Table 3 lists the number of photon counting data per position for
each radioactive source. A single datum corresponds to the number
of photons measured in 10 s. The activities of Co-60 and Cs-137
were approximately 49 and 41 mCi, respectively. The number of
photon counting data measured in 0.1 s is 100 and the accumulated
values in 10 s are used as a single datum. The standard deviations of
statistical fluctuation of counting data are in the ranges of 0.5~1.0%,
0.7~1.3% for Co-60 with 49 mCi and Cs-137 with 41 mCi, respectively,
and the fluctuations of counting data can be negligible.
ntal setup.



Fig. 3. Detailed description for ML model.

Table 3
Summary for the number of measured data and measured positions for ML model.

The number of training data per position 180
Total number of training data 1620
Measured position for training data (cm) 10, 20, 30, 40, 50, 60, 70, 80, 90
The number of test data per position 10
Total number of test data 180
Measured position for test data (cm) 10, 15, 17, 20, 25, 30, 40, 43, 45, 50, 55, 60, 70, 75, 78, 80, 85, 90
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180 number of Co-60 and Cs-137 photon counting data per
position are measured and used as training data for the position
estimation models, and 10 number of Co-60 and Cs-137 photon
counting data per position are measured and used as test data for
the position estimation models. For the training data, the source
positions are chosen at intervals of 10 cm from 10 to 90 cm along
the PSOF. The test data source locations used the same positions as
the training data, the central positions of the two adjacent training
data excluding the location of support bars, and three irregular
positions. The term regular position in this study is defined as all
the positions of the test data except at positions 17, 43, and 78 cm.
These three positions are categorized separately as randomly
sampled test data. Table 3 lists the summary of the number of
measured data and measured positions for the ML model.

The attenuation coefficients of PSOF for theoretical estimation
are obtained experimentally using the training data and equation 6.
The attenuation coefficients for Co-60 and Cs-137 model are
0.4457 m-1 and 0.3707 m-1, respectively.
3. Experimental results

The ML position estimation results of gamma ray sources are
compared to the theoretical position estimation results in various
manners. First, the evaluation is conducted at the regular source
positions to compare both accuracy and precision. Accuracy is
evaluated through the overall error values, and precision is evalu-
ated through the range of error bars. In this study, the error is
defined as the absolute value of the difference between the esti-
mated and the actual position, and the overall error is defined as
the total average of errors at all measured positions.

Fig. 4 shows the comparative plots between the position esti-
mation results using ML and theoretical estimations. In Fig. 4, the
red dots show the actual positions as a reference, green dots show
the results of theoretical estimations and blue dots show the results
of position estimation using ML. The error bars indicate the
boundary between the maximum and minimum estimated posi-
tions for both methods.
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Fig. 5 shows the error plots for the ML model position estima-
tion results and theoretical estimations. In Fig. 5-(a), the ML esti-
mation results show lower error values at all regular positions. In
Fig. 5-(b), the ML estimation result at the 25 cm position shows
slightly higher error values of 0.25 cm, and the results at the rest
positions show lower error values.

In addition, a test of the ML position estimation model with
three randomly sampled positions (17, 43, and 78 cm) is conducted
to identify whether the ML models are accurate with irregular data
away from regular points. As shown in Fig. 6, the error values of the
ML position estimation for both Co-60 and Cs-137 are lower than
the theoretical estimation results at all random points verifying
that the ML models for both sources are accurate at any position as
well as at almost regular positions.

Table 4 lists estimated average positions and their standard
deviations using ML and theoretical models for both Co-60 and Cs-
137 sources. And, Table 5 lists the overall error values for both Co-
60 and Cs-137 test results for position estimation models including
test data at both regular and randomly sampled positions. In terms
of overall error, the ML model results show approximately, an
91.54% improvement ratio (IR) in position estimation accuracy for
Co-60 source, and a 77.12% IR for Cs-137 source compared to
theoretical estimation. The value of IR is defined as equation (9) in
this study.

Improvement ratio ðIRÞ¼ ET � EM
ET

(9)

where ET is the error value from the theoretical estimation, and EM
is the error value from ML estimation.

To evaluate whether the test result is changed relative to the
number of training datasets, various combinations of training
datasets are used to construct ML models, and the evaluations for
different types of model are performed. Model 1 uses the training
data measured at three positions, that is, 10, 50, and 90 cm. Model 2
uses the training data obtained at five positions, that is, 10, 30, 50,
70, and 90 cm. Model 3 uses all of the training data measured at



Fig. 4. ML model evaluation results for (a) Co-60 model, (b) Cs-137 model.

Fig. 5. MLmodel position estimation error plots for (a) Co-60 model, (b) Cs-137 model.
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nine positions. The evaluation results of which are summarized in
Figs. 5 and 6. Table 6 lists evaluation results in the perspective of
overall error value corresponding to each ML models, and Fig. 7
shows the error plots with the cases listed in Table 6 for both
radioactive sources. As shown in Fig. 7 and Table 6, the original
position estimation models using every training data measured at
nine positions show the lowest overall error values for both Co-60
and Cs-137 radioactive sources.
Fig. 6. Random position estimation results for (a) Co-60 model, (b) Cs-137 model.
4. Conclusion

In this study, the 1D gamma ray source position is estimated
using a 1 m length PSOF, two photon counters and via ML data
3435



Table 4
Estimated average positions and their standard deviations using ML and theoretical models.

Actual source position [cm] ML estimation Theoretical estimation

Average position [cm] Standard deviation [cm] Average position [cm] Standard deviation [cm]

(a) Co-60
10 10.03 0.497 10.46 0.738
15 15.37 0.174 18.37 0.256
20 19.62 0.238 24.60 0.347
25 24.44 0.642 30.58 0.595
30 29.56 0.698 35.31 0.644
40 39.69 0.413 44.64 0.380
45 45.22 0.614 49.72 0.564
50 50.37 0.309 54.46 0.284
55 55.18 0.562 58.88 0.517
60 59.74 0.543 63.08 0.501
70 69.55 0.412 73.08 0.474
75 74.36 0.393 78.64 0.455
80 79.47 0.210 84.76 0.341
85 83.77 0.145 91.83 0.241
90 89.73 0.216 101.80 0.365
(b) Cs-137
10 10.86 0.497 9.52 0.738
15 15.83 0.174 17.19 0.256
20 20.82 0.238 24.76 0.347
25 22.60 0.642 27.14 0.595
30 31.04 0.698 34.89 0.644
40 39.79 0.413 42.74 0.380
45 45.41 0.614 47.78 0.564
50 50.39 0.309 52.24 0.284
55 56.85 0.562 58.03 0.517
60 60.85 0.543 62.10 0.501
70 71.37 0.412 73.76 0.474
75 76.45 0.393 80.53 0.455
80 80.52 0.210 86.10 0.341
85 85.07 0.145 92.84 0.241
90 92.42 0.216 103.84 0.365

Table 5
Overall error values of theoretical position estimations and ML position estimations
for Co-60 and Cs-137 radioactive sources.

ML estimation (cm) Theoretical estimation (cm)

Co-60 0.39 4.61
Cs-137 0.97 4.24

Table 6
Training data combinations and error values for test results of (a) Co-60, (b) Cs-137
source.

Model number Used position (cm) Overall error (cm)

(a) Co-60
1 10, 50, 90 1.90
2 10, 30, 50, 70, 90 0.93
3 10, 20, 30, 40, 50, 60, 70, 80, 90 0.39

(b) Cs-137
1 10, 50, 90 1.85
2 10, 30, 50, 70, 90 1.64
3 10, 20, 30, 40, 50, 60, 70, 80, 90 0.97
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processing. TheML training data used 1620 photon counting data at
nine source positions between 10 and 90 cm. The test data used
included 180 photon counting data at 18 source positions.

Various ML models are evaluated under different conditions,
and the results obtained were compared with the theoretical esti-
mations. The ML models using the data where the position is from
10 to 90 cm with 10 cm interval are determined to provide the
lowest overall errors on both Co-60 and Cs-137 sources, and the IR
in position estimation is 91.54% for the Co-60 source and 77.12% for
the Cs-137 source.

Further studies will be conducted on the position estimation of
gamma ray sources with 10 m or longer lengths and more complex
shapes of PSOF using ML, in which accurate theoretical position
estimation will be very difficult. In addition, nuclide identification
with various kinds of PSOFs using ML spectrum analysis will be
conducted in a future study to overcome one of the main disad-
vantageous characteristics of PSOF that finding photoelectric peak,
which is considered as the most prevalent nuclide identification
strategy, is impossible with PSOFs since the most dominant inter-
action of PSOFs and gamma ray is Compton scattering [26].

The proposed 1D gamma ray source position estimation system
can be used as a radioactive leakage scanner at disposal sites with



Fig. 7. Position estimation error plots of ML models using various training data for (a)
Co-60, (b) Cs-137 source.
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several advantageous features such as low cost, fast scanning speed
and ease of maintenance.
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