• Title/Summary/Keyword: Machine-vision

Search Result 883, Processing Time 0.029 seconds

A Study on the optical aspects of machine vision based dimensional measurement system (정밀 좌표측정용 머신비전 시스템의 광학적 해석에 관한 연구)

  • Lee, E.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.149-163
    • /
    • 1994
  • A novel method of dimensional measurement using machine vision, which is called Landmark Tracking System, has been developed. Its advantages come form tracking only the bright, standard shaped "landmarks" which are made from retroreflective sheets. In the design of the LTS, it is essential to know the relationship between optical parameters and their influence on system performance. Such optical parameters include the brightness of landmark image, the illumination system design, and the choice of imaging optics. And the performance of retroreflective material also plays important role in the LTS performances. Influences of such optical parameters on LTS's dimensional measurement characteristics are investigated, with respect to the retroreflective material, the imaging optics, and the illumination system. Measuremtn errors due to parameter variations are also analyzed. Experiments are performed with a LTS prototype. Retroreflective characteristics are verified, and the LTS's measurement performances are measured in the form of repeatability and accuracy. Experimental results shgow that the LTS has repeatability better than 1/30,000 of a field of view(30 degrees), and accuracy better tha 1/3,000 of a field fo view.d fo view.

  • PDF

Aircraft Recognition from Remote Sensing Images Based on Machine Vision

  • Chen, Lu;Zhou, Liming;Liu, Jinming
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.795-808
    • /
    • 2020
  • Due to the poor evaluation indexes such as detection accuracy and recall rate when Yolov3 network detects aircraft in remote sensing images, in this paper, we propose a remote sensing image aircraft detection method based on machine vision. In order to improve the target detection effect, the Inception module was introduced into the Yolov3 network structure, and then the data set was cluster analyzed using the k-means algorithm. In order to obtain the best aircraft detection model, on the basis of our proposed method, we adjusted the network parameters in the pre-training model and improved the resolution of the input image. Finally, our method adopted multi-scale training model. In this paper, we used remote sensing aircraft dataset of RSOD-Dataset to do experiments, and finally proved that our method improved some evaluation indicators. The experiment of this paper proves that our method also has good detection and recognition ability in other ground objects.

Accurate PCB Outline Extraction and Corner Detection for High Precision Machine Vision (고정밀 머신 비전을 위한 정확한 PCB 윤곽선과 코너 검출)

  • Ko, Dong-Min;Choi, Kang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.53-58
    • /
    • 2017
  • Recently, advance in technology have increased the importance of visual inspection in semiconductor inspection areas. In PCB visual inspection, accurate line estimation is critical to the accuracy of the entire process, since it is utilized in preprocessing steps such as calibration and alignment. We propose a line estimation method that is differently weighted for the line candidates using a histogram of gradient information, when the position of the initial approximate corner points is known. Using the obtained line equation of the outline, corner points can be calculated accurately. The proposed method is compared with the existing method in terms of the accuracy of the detected corner points. The proposed method accurately detects corner points even when the existing method fails. For high-resolution frames of 3.5mega-pixels, the proposed method is performed in 89.01ms.

  • PDF

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.

Development of an Automatic Marking System for Fabric Inspection Machine (원단 불량 검사기의 자동 마킹 시스템 개발)

  • Kim, Jae-Yeon;Lee, Jae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.22-29
    • /
    • 2022
  • In this study, an automatic marking system for fabric inspection machines was developed. The main objectives of the study were to promote intelligence and automation for the inspection process, as well as to increase textile industrial productivity. Generally, when a worker manually inspects and marks a fabric, human error and reduced efficiency are unavoidable. To overcome these problems, we developed an automatic marking system that uses robots. This system incorporates a vision camera to automatically recognize defects, and an optical fiber sensor to detect the side of the fabric. To verify the performance, the control system sends a command directly to the robot to mark the fabric. Finally, the actual production confirmed that the proposed system could perform the desired motion.

Assembly performance evaluation method for prefabricated steel structures using deep learning and k-nearest neighbors

  • Hyuntae Bang;Byeongjun Yu;Haemin Jeon
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • This study proposes an automated assembly performance evaluation method for prefabricated steel structures (PSSs) using machine learning methods. Assembly component images were segmented using a modified version of the receptive field pyramid. By factorizing channel modulation and the receptive field exploration layers of the convolution pyramid, highly accurate segmentation results were obtained. After completing segmentation, the positions of the bolt holes were calculated using various image processing techniques, such as fuzzy-based edge detection, Hough's line detection, and image perspective transformation. By calculating the distance ratio between bolt holes, the assembly performance of the PSS was estimated using the k-nearest neighbors (kNN) algorithm. The effectiveness of the proposed framework was validated using a 3D PSS printing model and a field test. The results indicated that this approach could recognize assembly components with an intersection over union (IoU) of 95% and evaluate assembly performance with an error of less than 5%.

Identification via Retinal Vessels Combining LBP and HOG

  • Ali Noori;Esmaeil Kheirkhah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • With development of information technology and necessity for high security, using different identification methods has become very important. Each biometric feature has its own advantages and disadvantages and choosing each of them depends on our usage. Retinal scanning is a bio scale method for identification. The retina is composed of vessels and optical disk. The vessels distribution pattern is one the remarkable retinal identification methods. In this paper, a new approach is presented for identification via retinal images using LBP and hog methods. In the proposed method, it will be tried to separate the retinal vessels accurately via machine vision techniques which will have good sustainability in rotation and size change. HOG-based or LBP-based methods or their combination can be used for separation and also HSV color space can be used too. Having extracted the features, the similarity criteria can be used for identification. The implementation of proposed method and its comparison with one of the newly-presented methods in this area shows better performance of the proposed method.

Flexible inspection system using CAD detabase and vision guided coordinate measuring machine (3차원 측정기를이용한 Flexible Inspection System)

  • 조명우;박용길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.16-29
    • /
    • 1993
  • The objective of this research is in the development of a flexible 3-dimensional inspection system for the sculptured surface by integrating the Coordinate Measuring Machine (CMM), CAD database, and vision system. To achieve the proposed flexible inspection system, two research categories are discussed in the study: new inspection planning method includes a new measuring point selection method and various new probe path generation methods. The object recognition and localization process for the unknown surface can be easily carried out by introducing a new concept called "Z-Layer". The experimental results indicate that the developed flexible inspection system, with the proposed algorithm, can be inplemented in real situation.situation.

  • PDF

Development of PCB Classification System Using Robot Arm and Machine Vision (로봇암과 머신비전을 이용한 기판분류 시스템 개발)

  • Yun, Tae-Jin;Yeo, Jeong-Hun;Kim, Hyun-Su;Park, Seung-Ryeol;Hwang, Seung-Hyeok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.145-146
    • /
    • 2020
  • 현재 4차 산업 혁명 시대에서 가장 중요한 화두는 빅데이터(Big Data), 인공지능이며, 이를 이용한 분야로 생산, 제조 분야에서도 인공지능 영상 인식 기술을 활용한 생산품을 자동으로 분류하고 나아가 품질검사도 할 수 있도록 개발하고 있다. 또한, 로봇을 공장의 생산라인에 운영하여 노동력 감소에 따른 보완이 되고, 제조과정의 효율성 증가와 생산시간 감소로 생산성을 높일 수 있다. 이를 위해 본 논문에서는 실시간 객체감지 기술인 YOLO-v3 알고리즘을 이용해서 PCB보드 인식, 분류할 수 있는 시스템을 개발하였다.

  • PDF

Object Detection Using Deep Learning Algorithm CNN

  • S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.129-134
    • /
    • 2024
  • Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.