• Title/Summary/Keyword: Machine-learning (ML)

Search Result 300, Processing Time 0.02 seconds

Modeling of AutoML using Colored Petri Net

  • Yo-Seob, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Developing a machine learning model and putting it into production goes through a number of steps. Automated Machine Learning(AutoML) appeared to increase productivity and efficiency by automating inefficient tasks that occur while repeating this process whenever machine learning is applied. The high degree of automation of AutoML models allows non-experts to use machine learning models and techniques without the need to become machine learning experts. Automating the process of applying machine learning end-to-end with AutoML models has the added benefit of creating simpler solutions, generating these solutions faster, and often generating models that outperform hand-designed models. In this paper, the AutoML data is collected and AutoML's Color Petri net model is created and analyzed based on it.

Analysis on Trends of Machine Learning-as-a-Service

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.303-308
    • /
    • 2018
  • Demand is increasing rapidly in recent years than supply to machine learning professionals. To alleviate this gap, user-friendly machine learning software that can be used by non-specialists has emerged, which is Machine Learning-as-a-Service(MLaaS). MLaaS provides services that enable businesses to easily leverage ML capabilities without expertise. In this paper, we will compare and analyze features, interfaces, supporting programming language, ML framework, and Machine Learning services of MLaaS, to help companies easily use ML service.

Landslide susceptibility assessment using feature selection-based machine learning models

  • Liu, Lei-Lei;Yang, Can;Wang, Xiao-Mi
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.

Machine Learning in FET-based Chemical and Biological Sensors: A Mini Review

  • Ahn, Jae-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This mini review summarizes some of the recent advances in machine-learning (ML)-driven chemical and biological sensors. Specific focus is on field-effect-transistor (FET)-based sensors with a description of their structures and detection mechanisms. Key ML techniques are briefly reviewed for an audience not familiar with the basic principles. We mainly discuss two aspects: (1) data analysis based on ML and (2) ML applied to sensor design. In conclusion, the challenges and opportunities for the advancement of ML-based sensors are briefly considered.

Effective E-Learning Practices by Machine Learning and Artificial Intelligence

  • Arshi Naim;Sahar Mohammed Alshawaf
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.209-214
    • /
    • 2024
  • This is an extended research paper focusing on the applications of Machine Learing and Artificial Intelligence in virtual learning environment. The world is moving at a fast pace having the application of Machine Learning (ML) and Artificial Intelligence (AI) in all the major disciplines and the educational sector is also not untouched by its impact especially in an online learning environment. This paper attempts to elaborate on the benefits of ML and AI in E-Learning (EL) in general and explain how King Khalid University (KKU) EL Deanship is making the best of ML and AI in its practices. Also, researchers have focused on the future of ML and AI in any academic program. This research is descriptive in nature; results are based on qualitative analysis done through tools and techniques of EL applied in KKU as an example but the same modus operandi can be implemented by any institution in its EL platform. KKU is using Learning Management Services (LMS) for providing online learning practices and Blackboard (BB) for sharing online learning resources, therefore these tools are considered by the researchers for explaining the results of ML and AI.

Emerging Machine Learning in Wearable Healthcare Sensors

  • Gandha Satria Adi;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.378-385
    • /
    • 2023
  • Human biosignals provide essential information for diagnosing diseases such as dementia and Parkinson's disease. Owing to the shortcomings of current clinical assessments, noninvasive solutions are required. Machine learning (ML) on wearable sensor data is a promising method for the real-time monitoring and early detection of abnormalities. ML facilitates disease identification, severity measurement, and remote rehabilitation by providing continuous feedback. In the context of wearable sensor technology, ML involves training on observed data for tasks such as classification and regression with applications in clinical metrics. Although supervised ML presents challenges in clinical settings, unsupervised learning, which focuses on tasks such as cluster identification and anomaly detection, has emerged as a useful alternative. This review examines and discusses a variety of ML algorithms such as Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT), Neural Networks (NN), and Deep Learning for the analysis of complex clinical data.

Machine Learning based Bandwidth Prediction for Dynamic Adaptive Streaming over HTTP

  • Yoo, Soyoung;Kim, Gyeongryeong;Kim, Minji;Kim, Yeonjin;Park, Soeun;Kim, Dongho
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.33-48
    • /
    • 2020
  • By Digital Transformation, new technologies like ML (Machine Learning), Big Data, Cloud, VR/AR are being used to video streaming technology. We choose ML to provide optimal QoE (Quality of Experience) in various network conditions. In other words, ML helps DASH in providing non-stopping video streaming. In DASH, the source video is segmented into short duration chunks of 2-10 seconds, each of which is encoded at several different bitrate levels and resolutions. We built and compared the performances of five prototypes after applying five different machine learning algorithms to DASH. The prototype consists of a dash.js, a video processing server, web servers, data sets, and five machine learning models.

Iowa Liquor Sales Data Predictive Analysis Using Spark

  • Ankita Paul;Shuvadeep Kundu;Jongwook Woo
    • Asia pacific journal of information systems
    • /
    • v.31 no.2
    • /
    • pp.185-196
    • /
    • 2021
  • The paper aims to analyze and predict sales of liquor in the state of Iowa by applying machine learning algorithms to models built for prediction. We have taken recourse of Azure ML and Spark ML for our predictive analysis, which is legacy machine learning (ML) systems and Big Data ML, respectively. We have worked on the Iowa liquor sales dataset comprising of records from 2012 to 2019 in 24 columns and approximately 1.8 million rows. We have concluded by comparing the models with different algorithms applied and their accuracy in predicting the sales using both Azure ML and Spark ML. We find that the Linear Regression model has the highest precision and Decision Forest Regression has the fastest computing time with the sample data set using the legacy Azure ML systems. Decision Tree Regression model in Spark ML has the highest accuracy with the quickest computing time for the entire data set using the Big Data Spark systems.

Analysis of Automatic Machine Learning Solution Trends of Startups

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.297-304
    • /
    • 2020
  • Recently, open source automatic machine learning solutions have been applied in many fields. To apply open source automated machine learning to real world problems, you need to write code with expertise in machine learning. Writing code without machine learning knowledge is challenging. To solve this problem, the automatic machine learning solutions provided by startups are made easy to use with a clean user interface. In this paper, we review automatic machine learning solutions of startups.

Classification of ultrasonic signals of thermally aged cast austenitic stainless steel (CASS) using machine learning (ML) models

  • Kim, Jin-Gyum;Jang, Changheui;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1167-1174
    • /
    • 2022
  • Cast austenitic stainless steels (CASSs) are widely used as structural materials in the nuclear industry. The main drawback of CASSs is the reduction in fracture toughness due to long-term exposure to operating environment. Even though ultrasonic non-destructive testing has been conducted in major nuclear components and pipes, the detection of cracks is difficult due to the scattering and attenuation of ultrasonic waves by the coarse grains and the inhomogeneity of CASS materials. In this study, the ultrasonic signals measured in thermally aged CASS were discriminated for the first time with the simple ultrasonic technique (UT) and machine learning (ML) models. Several different ML models, specifically the K-nearest neighbors (KNN), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP) models, were used to classify the ultrasonic signals as thermal aging condition of CASS specimens. We identified that the ML models can predict the category of ultrasonic signals effectively according to the aging condition.