Acknowledgement
This study was supported by the Korea Foundation of Nuclear Safety (KoFONS) using financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea. (No. 2106001). The thermally aged CASS specimens were provided by the PNNL as a part of an international collaborative R&D project of PIONIC. We wish to thank Dr. Jongbeom Kim, Dr. Kyung-Mo Kim (Korea Atomic Energy Research Institute, KR) who helped us in providing the ultrasonic equipment. Also, we would like to acknowledge Dr. Thak Sang Byun (Oak Ridge National Laboratory, US) who helped us in providing the information of specimens.
References
- O.K. Chopra, A. Sather, Initial assessment of the mechanisms and significance of low-temperature embrittlement of cast stainless steels in LWR system. Nuclear Regulatory Commission, 1990. NUREG/CR-5385.
- H.M. Chung, Aging and life prediction of cast duplex stainless steel components, Int. J. Pres. Ves. Pip. 50 (1-3) (1992) 179-213. https://doi.org/10.1016/0308-0161(92)90037-G
- H. Jang, S. Hong, C. Jang, J.G. Lee, The effects of reversion heat treatment on the recovery of thermal aging embrittlement of CF8M cast stainless steels, Mater. Des. 56 (2014) 517-521. https://doi.org/10.1016/j.matdes.2013.12.010
- C. Jang, H. Jang, S. Hong, J.G. Lee, Evaluation of the recovery of thermal aging embrittlement of CF8M cast stainless steels after reversion heat treatments, Int. J. Pres. Ves. Pip. 131 (2015) 67-74. https://doi.org/10.1016/j.ijpvp.2015.04.011
- T.S. Byun, D.A. Collins, T.G. Lach, E.L. Carter, Degradation of impact toughness in cast stainless steels during long-term thermal aging, J. Nucl. Mater. 542 (2020) 152524. https://doi.org/10.1016/j.jnucmat.2020.152524
- B. S. Kong, C. Jang, S. Kang, T. S. Byun, Evaluation of thermal ageing of cast austenitic stainless steels - mechanical properties in micro- and macro-scale, in: Proceedings of the 13th International Symposium on the Integrity of Nuclear Components, Virtual Meeting, April 21-22, 2021.
- C. Wunderlich, C. Tschope, F. Duckhorn, Advanced methods in NDE using machine learning approaches, in: AIP Conference Proceedings, 1, 2018, 020022.
- J.B. Harley, D. Sparkman, Machine learning and NDE: past, present, and future, in: AIP Conference Proceedings, 2102, 2019, 090001.
- P. Gardner, R. Fuentes, N. Dervilis, C. Mineo, S.G. Pierce, E.J. Cross, K. Worden, Machine learning at the interface of structural health monitoring and nondestructive evaluation, Philosophical Transactions of the Royal Society A 378 (2182) (2020) 20190581.
- A.J. Fredo, R.S. Abilash, R. Femi, A. Mythili, C.S. Kumar, Classification of damages in composite images using Zernike moments and support vector machines, Compos. B Eng. 168 (2019) 77-86. https://doi.org/10.1016/j.compositesb.2018.12.064
- W. Choi, H. Huh, B.A. Tama, G. Park, S. Lee, A neural network model for material degradation detection and diagnosis using microscopic images, IEEE Access 7 (2019) 92151-92160. https://doi.org/10.1109/access.2019.2927162
- N. Munir, H.J. Kim, S.J. Song, S.S. Kang, Investigation of deep neural network with drop out for ultrasonic flaw classification in weldments, J. Mech. Sci. Technol. 32 (7) (2018) 3073-3080. https://doi.org/10.1007/s12206-018-0610-1
- N. Munir, J. Park, H.J. Kim, S.J. Song, S.S. Kang, Performance enhancement of convolutional neural network for ultrasonic flaw classification by adopting autoencoder, NDT E Int. 111 (2020) 102218. https://doi.org/10.1016/j.ndteint.2020.102218
- P. Jeong, F. Ammirato, Ultrasonic examination of cast stainless steel component in nuclear power plant. Review of Progress in Quantitative Nondestructive Evaluation, 1989, pp. 2105-2112.
- P. Ramuhalli, et al., Ultrasonic Characterization of Cast Austenitic Stainless Steel Microstructure: Discrimination between Equiaxed-And Columnar-Grain Material-An Interim Study, Pacific Northwest National Lab.(PNNL), 2009. PNNL-18912.
- R.E. Jacob, et al., NDE Reliability Issues for the Examination of CASS Components, Pacific Northwest National Lab.(PNNL), 2019. PNNL-28840.
- P. Majumdar, S.B. Singh, M. Chakraboty, Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques - a comparative study, Mater. Sci. Eng. 489 (2008) 419-425. https://doi.org/10.1016/j.msea.2007.12.029
- J. Kim, J.G. Kim, B. Kong, K.M. Kim, C. Jang, S.S. Kang, K.Y. Jhang, Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel, Nuclear Engineering and Technology 52 (3) (2020) 621-625. https://doi.org/10.1016/j.net.2019.09.004
- ASTM A351/A351M-00, Standard Specification for Castings, Austenitic, Austenitic-Ferritic (Duplex), for Pressure-Containing Parts, ASTM International, West Conshohocken, PA, USA, 2000.
- L. Buitinck et al., API Design for Machine Learning Software: Experiences from the Scikit-Learn Project. arXiv. 2015. https://arxiv.org/abs/1309.0238.
- L.E. Peterson, K-nearest neighbor, Scholarpedia 4 (2) (2009) 1883. https://doi.org/10.4249/scholarpedia.1883
- W.S. Noble, What is a support vector machine? Nat. Biotechnol. 24 (12) (2006) 1565-1567. https://doi.org/10.1038/nbt1206-1565
- Scikit-learn (support vector machine), Available online: https://scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation. (Accessed 7 July 2021).
- M.W. Gardner, S.R. Dorling, Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences, Atmospheric environment 32 (14-15) (1998) 2627-2636. https://doi.org/10.1016/S1352-2310(97)00447-0
- V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Haifa Icml (Ed.), Israel, 2010. June 21-24.
- D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. arXiv. 2014. https://arxiv.org/abs/1412.6980.
- F. Pedregosa, et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825-2830.
- DeepAi, Available online: https://deepai.org/machine-learning-glossary-and-terms/accuracy-error-rate. (Accessed 7 July 2021).
- G. Zhang, M.Y. Hu, B.E. Patuwo, D.C. Indro, Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis, Eur. J. Oper. Res. 116 (1) (1999) 16-32. https://doi.org/10.1016/S0377-2217(98)00051-4
- Scikit-learn (Confusion matrix). Available online: https://scikit-learn.org/0.18/auto_examples/model_selection/plot_confusion_matrix.html. (Accessed 7 July 2021).
- C. Goutte, E. Gaussier, A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. European Conference on Information Retrieval, 2005, pp. 345-359.