References
- M. Kaisti, "Detection principles of biological and chemical FET sensors", Biosens. Bioelectron., Vol. 98, pp. 437-448, 2017. https://doi.org/10.1016/j.bios.2017.07.010
- T. Lee et al., "Recent advances in AIV biosensors composed of nanobio hybrid material", Micromachines, Vol. 9, No. 12, pp. 651, 2018. https://doi.org/10.3390/mi9120651
- T. Lee et al., "Development of the Troponin Detection System Based on the Nanostructure", Micromachines, Vol. 10, No. 3, pp. 203, 2019. https://doi.org/10.3390/mi10030203
- M.-Z. Li, S.-T. Han, and Y. Zhou, "Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors", Adv. Intell. Syst., Vol. 2, No. 11, pp. 2000113, 2020. https://doi.org/10.1002/aisy.202000113
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning", Nature, Vol. 521, No. 7553, pp. 436-444, 2015. https://doi.org/10.1038/nature14539
- A. F. de Almeida, R. Moreira, and T. Rodrigues, "Synthetic organic chemistry driven by artificial intelligence", Nat. Rev. Chem., Vol. 3, No. 10, pp. 589-604, 2019. https://doi.org/10.1038/s41570-019-0124-0
- Y. Gil, M. Greaves, J. Hendler, and H. Hirsh, "Amplify scientific discovery with artificial intelligence", Science, Vol. 346, No. 6206, pp. 171-172, 2014. https://doi.org/10.1126/science.1259439
- K. A. Brown, S. Brittman, N. Maccaferri, D. Jariwala, and U. Celano, "Machine Learning in Nanoscience: Big Data at Small Scales", Nano Lett., Vol. 20, No. 1, pp. 2-10, 2019. https://doi.org/10.1021/acs.nanolett.9b04090
- Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species", Science, Vol. 293, No. 5533, pp. 1289-1292, 2001. https://doi.org/10.1126/science.1062711
- E. Stern et al., "Label-free immunodetection with CMOS-compatible semiconducting nanowires", Nature, Vol. 445, No. 7127, pp. 519-522, 2007. https://doi.org/10.1038/nature05498
- M. A. H. Khan and M. V. Rao, "Gallium Nitride (GaN) Nanostructures and Their Gas Sensing Properties: A Review", Sensors, Vol. 20, No. 14, pp. 3889, 2020. https://doi.org/10.3390/s20143889
- Q. Liu et al., "Highly sensitive and quick detection of acute myocardial infarction biomarkers using In2O3 nanoribbon biosensors fabricated using shadow masks", ACS Nano, Vol. 10, No. 11, pp. 10117-10125, 2016. https://doi.org/10.1021/acsnano.6b05171
- A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, "Field-effect transistors based on single nanowires of conducting polymers", J. Phys. Chem. C, Vol. 111, No. 13, pp. 5218-5221, 2007. https://doi.org/10.1021/jp067213g
- J. Kwon et al., "Nanoscale FET-based transduction toward sensitive extended-gate biosensors", ACS Sens., Vol. 4, No. 6, pp. 1724-1729, 2019. https://doi.org/10.1021/acssensors.9b00731
- J.-H. Ahn, J. Yun, Y.-K. Choi, and I. Park, "Palladium nanoparticle decorated silicon nanowire field-effect transistor with side-gates for hydrogen gas detection", Appl. Phys. Lett., Vol. 104, No. 1, pp. 013508, 2014. https://doi.org/10.1063/1.4861228
- Y. G. Song, G. S. Kim, B.-K. Ju, and C.-Y. Kang, "Design of Semiconducting Gas Sensors for Room-Temperature Operation", J. Sens. Sci. Technol., Vol. 29, No. 1, pp. 1-6, 2020. https://doi.org/10.5369/JSST.2019.29.1.1
- I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundkvist, "A hydrogen- sensitive MOS field- effect transistor", Appl. Phys. Lett., Vol. 26, No. 2, pp. 55-57, 1975. https://doi.org/10.1063/1.88053
- P. R. Nair and M. A. Alam, "Design considerations of silicon nanowire biosensors", IEEE Trans. Electron Devices, Vol. 54, No. 12, pp. 3400-3408, 2007. https://doi.org/10.1109/TED.2007.909059
- C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.
- Z. Li, J. R. Askim, and K. S. Suslick, "The optoelectronic nose: colorimetric and fluorometric sensor arrays", Chem. Rev., Vol. 119, No. 1, pp. 231-292, 2018. https://doi.org/10.1021/acs.chemrev.8b00226
- D. A. Pisner and D. M. Schnyer, "Support vector machine" ,in Machine Learning: Elsevier, 2020, pp. 101-121.
- A. Krogh, "What are artificial neural networks?", Nat. Biotechnol., Vol. 26, No. 2, pp. 195-197, 2008. https://doi.org/10.1038/nbt1386
- M. Scholz, Approaches to analyse and interpret biological profile data, University of Potsdam, Germany, Ph.D. thesis, 2006.
- Y. Jiang, N. Tang, C. Zhou, Z. Han, H. Qu, and X. Duan, "A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography", Nanoscale, Vol. 10, No. 44, pp. 20578-20586, 2018. https://doi.org/10.1039/c8nr04198a
- S.-J. Kim, S.-J. Choi, J.-S. Jang, H.-J. Cho, and I.-D. Kim, "Innovative nanosensor for disease diagnosis", Acc. Chem. Res., Vol. 50, No. 7, pp. 1587-1596, 2017. https://doi.org/10.1021/acs.accounts.7b00047
- M. S. Wiederoder et al., "Graphene nanoplatelet-polymer chemiresistive sensor arrays for the detection and discrimination of chemical warfare agent simulants", ACS Sens., Vol. 2, No. 11, pp. 1669-1678, 2017. https://doi.org/10.1021/acssensors.7b00550
- Y. Rong et al., "Post hoc support vector machine learning for impedimetric biosensors based on weak protein-ligand interactions", Analyst, Vol. 143, No. 9, pp. 2066-2075, 2018. https://doi.org/10.1039/c8an00065d
- L. A. Horsfall, D. C. Pugh, C. S. Blackman, and I. P. Parkin, "An array of WO3 and CTO heterojunction semiconducting metal oxide gas sensors used as a tool for explosive detection", J. Mater. Chem. A, Vol. 5, No. 5, pp. 2172-2179, 2017. https://doi.org/10.1039/C6TA08253J
- L. Bian et al., "Machine-Learning Identification of the Sensing Descriptors Relevant in Molecular Interactions with Metal Nanoparticle-Decorated Nanotube Field-Effect Transistors", ACS Appl. Mater. Interfaces, Vol. 11, No. 1, pp. 1219-1227, 2018.
- B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, "Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase", Nano Lett., Vol. 14, No. 2, pp. 933-938, 2014. https://doi.org/10.1021/nl404335p
- M. K. Nakhleh et al., "Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules", ACS Nano, Vol. 11, No. 1, pp. 112-125, 2017. https://doi.org/10.1021/acsnano.6b04930
- B. Kim, T. J. Norman, R. S. Jones, D.-I. Moon, J.-W. Han, and M. Meyyappan, "Carboxylated Single-Walled Carbon Nanotube Sensors with Varying pH for the Detection of Ammonia and Carbon Dioxide Using an Artificial Neural Network", ACS Appl. Nano Mater., Vol. 2, No. 10, pp. 6445-6451, 2019. https://doi.org/10.1021/acsanm.9b01401
- J.-H. Ahn, B. Choi, and S.-J. Choi, "Understanding the signal amplification in dual-gate FET-based biosensors", J. Appl. Phys, Vol. 128, No. 18, pp. 184502, 2020. https://doi.org/10.1063/5.0010136
- B. Cao et al., "How to optimize materials and devices via design of experiments and machine learning: Demonstration using organic photovoltaics", ACS Nano, Vol. 12, No. 8, pp. 7434-7444, 2018. https://doi.org/10.1021/acsnano.8b04726
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, "2D transition metal dichalcogenides", Nat. Rev. Mater., Vol. 2, No. 8, pp. 17033, 2017. https://doi.org/10.1038/natrevmats.2017.33
- Z. Lin et al., "2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications", 2D Mater., Vol. 3, No. 4, pp. 042001, 2016. https://doi.org/10.1088/2053-1583/3/4/042001
- A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures", Nature, Vol. 499, No. 7459, pp. 419-425, 2013. https://doi.org/10.1038/nature12385
- T. Hussain, T. Kaewmaraya, S. Chakraborty, and R. Ahuja, "Defect and substitution-induced silicene sensor to probe toxic gases", J. Phys. Chem. C, Vol. 120, No. 44, pp. 25256-25262, 2016. https://doi.org/10.1021/acs.jpcc.6b08973
- N. C. Frey, D. Akinwande, D. Jariwala, and V. B. Shenoy, "Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing", ACS Nano, Vol. 14, No. 10, pp. 13406-13417, 2020. https://doi.org/10.1021/acsnano.0c05267
- C.-H. Lee et al., "Atomically thin p-n junctions with van der Waals heterointerfaces", Nat. Nanotechnol., Vol. 9, No. 9, pp. 676, 2014. https://doi.org/10.1038/nnano.2014.150
- L. Bassman et al., "Active learning for accelerated design of layered materials", npj Comput. Mater., Vol. 4, No. 1, pp. 1-9, 2018. https://doi.org/10.1038/s41524-017-0060-9
- P. Lin and F. Yan, "Organic thin-film transistors for chemical and biological sensing", Adv. Mater., Vol. 24, No. 1, pp. 34-51, 2012. https://doi.org/10.1002/adma.201103334
- M. H. Lee, "Machine Learning for Understanding the Relationship between the Charge Transport Mobility and Electronic Energy Levels for n-Type Organic Field-Effect Transistors", Adv. Electron. Mater., Vol. 5, No. 12, pp. 1900573, 2019. https://doi.org/10.1002/aelm.201900573
- S. Mazurenko, Z. Prokop, and J. Damborsky, "Machine learning in enzyme engineering", ACS Catal., Vol. 10, No. 2, pp. 1210-1223, 2019.
- J. Song et al., "A Sequential Multidimensional Analysis Algorithm for Aptamer Identification based on Structure Analysis and Machine Learning", Anal. Chem., Vol. 92, No. 4, pp. 3307-3314, 2019. https://doi.org/10.1021/acs.analchem.9b05203
- N. Nakatsuka et al., "Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing", Science, Vol. 362, No. 6412, pp. 319-324, 2018. https://doi.org/10.1126/science.aao6750
- Y. Kim et al., "A bioinspired flexible organic artificial afferent nerve", Science, Vol. 360, No. 6392, pp. 998-1003, 2018. https://doi.org/10.1126/science.aao0098
- C. Wan et al., "An artificial sensory neuron with tactile perceptual learning", Adv. Mater., Vol. 30, No. 30, pp. 1801291, 2018. https://doi.org/10.1002/adma.201801291