DOI QR코드

DOI QR Code

Machine Learning in FET-based Chemical and Biological Sensors: A Mini Review

  • Ahn, Jae-Hyuk (Department of Electronics Engineering, Chungnam National University)
  • Received : 2020.12.01
  • Accepted : 2021.01.23
  • Published : 2021.01.31

Abstract

This mini review summarizes some of the recent advances in machine-learning (ML)-driven chemical and biological sensors. Specific focus is on field-effect-transistor (FET)-based sensors with a description of their structures and detection mechanisms. Key ML techniques are briefly reviewed for an audience not familiar with the basic principles. We mainly discuss two aspects: (1) data analysis based on ML and (2) ML applied to sensor design. In conclusion, the challenges and opportunities for the advancement of ML-based sensors are briefly considered.

Keywords

References

  1. M. Kaisti, "Detection principles of biological and chemical FET sensors", Biosens. Bioelectron., Vol. 98, pp. 437-448, 2017. https://doi.org/10.1016/j.bios.2017.07.010
  2. T. Lee et al., "Recent advances in AIV biosensors composed of nanobio hybrid material", Micromachines, Vol. 9, No. 12, pp. 651, 2018. https://doi.org/10.3390/mi9120651
  3. T. Lee et al., "Development of the Troponin Detection System Based on the Nanostructure", Micromachines, Vol. 10, No. 3, pp. 203, 2019. https://doi.org/10.3390/mi10030203
  4. M.-Z. Li, S.-T. Han, and Y. Zhou, "Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors", Adv. Intell. Syst., Vol. 2, No. 11, pp. 2000113, 2020. https://doi.org/10.1002/aisy.202000113
  5. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning", Nature, Vol. 521, No. 7553, pp. 436-444, 2015. https://doi.org/10.1038/nature14539
  6. A. F. de Almeida, R. Moreira, and T. Rodrigues, "Synthetic organic chemistry driven by artificial intelligence", Nat. Rev. Chem., Vol. 3, No. 10, pp. 589-604, 2019. https://doi.org/10.1038/s41570-019-0124-0
  7. Y. Gil, M. Greaves, J. Hendler, and H. Hirsh, "Amplify scientific discovery with artificial intelligence", Science, Vol. 346, No. 6206, pp. 171-172, 2014. https://doi.org/10.1126/science.1259439
  8. K. A. Brown, S. Brittman, N. Maccaferri, D. Jariwala, and U. Celano, "Machine Learning in Nanoscience: Big Data at Small Scales", Nano Lett., Vol. 20, No. 1, pp. 2-10, 2019. https://doi.org/10.1021/acs.nanolett.9b04090
  9. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species", Science, Vol. 293, No. 5533, pp. 1289-1292, 2001. https://doi.org/10.1126/science.1062711
  10. E. Stern et al., "Label-free immunodetection with CMOS-compatible semiconducting nanowires", Nature, Vol. 445, No. 7127, pp. 519-522, 2007. https://doi.org/10.1038/nature05498
  11. M. A. H. Khan and M. V. Rao, "Gallium Nitride (GaN) Nanostructures and Their Gas Sensing Properties: A Review", Sensors, Vol. 20, No. 14, pp. 3889, 2020. https://doi.org/10.3390/s20143889
  12. Q. Liu et al., "Highly sensitive and quick detection of acute myocardial infarction biomarkers using In2O3 nanoribbon biosensors fabricated using shadow masks", ACS Nano, Vol. 10, No. 11, pp. 10117-10125, 2016. https://doi.org/10.1021/acsnano.6b05171
  13. A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, "Field-effect transistors based on single nanowires of conducting polymers", J. Phys. Chem. C, Vol. 111, No. 13, pp. 5218-5221, 2007. https://doi.org/10.1021/jp067213g
  14. J. Kwon et al., "Nanoscale FET-based transduction toward sensitive extended-gate biosensors", ACS Sens., Vol. 4, No. 6, pp. 1724-1729, 2019. https://doi.org/10.1021/acssensors.9b00731
  15. J.-H. Ahn, J. Yun, Y.-K. Choi, and I. Park, "Palladium nanoparticle decorated silicon nanowire field-effect transistor with side-gates for hydrogen gas detection", Appl. Phys. Lett., Vol. 104, No. 1, pp. 013508, 2014. https://doi.org/10.1063/1.4861228
  16. Y. G. Song, G. S. Kim, B.-K. Ju, and C.-Y. Kang, "Design of Semiconducting Gas Sensors for Room-Temperature Operation", J. Sens. Sci. Technol., Vol. 29, No. 1, pp. 1-6, 2020. https://doi.org/10.5369/JSST.2019.29.1.1
  17. I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundkvist, "A hydrogen- sensitive MOS field- effect transistor", Appl. Phys. Lett., Vol. 26, No. 2, pp. 55-57, 1975. https://doi.org/10.1063/1.88053
  18. P. R. Nair and M. A. Alam, "Design considerations of silicon nanowire biosensors", IEEE Trans. Electron Devices, Vol. 54, No. 12, pp. 3400-3408, 2007. https://doi.org/10.1109/TED.2007.909059
  19. C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.
  20. Z. Li, J. R. Askim, and K. S. Suslick, "The optoelectronic nose: colorimetric and fluorometric sensor arrays", Chem. Rev., Vol. 119, No. 1, pp. 231-292, 2018. https://doi.org/10.1021/acs.chemrev.8b00226
  21. D. A. Pisner and D. M. Schnyer, "Support vector machine" ,in Machine Learning: Elsevier, 2020, pp. 101-121.
  22. A. Krogh, "What are artificial neural networks?", Nat. Biotechnol., Vol. 26, No. 2, pp. 195-197, 2008. https://doi.org/10.1038/nbt1386
  23. M. Scholz, Approaches to analyse and interpret biological profile data, University of Potsdam, Germany, Ph.D. thesis, 2006.
  24. Y. Jiang, N. Tang, C. Zhou, Z. Han, H. Qu, and X. Duan, "A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography", Nanoscale, Vol. 10, No. 44, pp. 20578-20586, 2018. https://doi.org/10.1039/c8nr04198a
  25. S.-J. Kim, S.-J. Choi, J.-S. Jang, H.-J. Cho, and I.-D. Kim, "Innovative nanosensor for disease diagnosis", Acc. Chem. Res., Vol. 50, No. 7, pp. 1587-1596, 2017. https://doi.org/10.1021/acs.accounts.7b00047
  26. M. S. Wiederoder et al., "Graphene nanoplatelet-polymer chemiresistive sensor arrays for the detection and discrimination of chemical warfare agent simulants", ACS Sens., Vol. 2, No. 11, pp. 1669-1678, 2017. https://doi.org/10.1021/acssensors.7b00550
  27. Y. Rong et al., "Post hoc support vector machine learning for impedimetric biosensors based on weak protein-ligand interactions", Analyst, Vol. 143, No. 9, pp. 2066-2075, 2018. https://doi.org/10.1039/c8an00065d
  28. L. A. Horsfall, D. C. Pugh, C. S. Blackman, and I. P. Parkin, "An array of WO3 and CTO heterojunction semiconducting metal oxide gas sensors used as a tool for explosive detection", J. Mater. Chem. A, Vol. 5, No. 5, pp. 2172-2179, 2017. https://doi.org/10.1039/C6TA08253J
  29. L. Bian et al., "Machine-Learning Identification of the Sensing Descriptors Relevant in Molecular Interactions with Metal Nanoparticle-Decorated Nanotube Field-Effect Transistors", ACS Appl. Mater. Interfaces, Vol. 11, No. 1, pp. 1219-1227, 2018.
  30. B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, "Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase", Nano Lett., Vol. 14, No. 2, pp. 933-938, 2014. https://doi.org/10.1021/nl404335p
  31. M. K. Nakhleh et al., "Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules", ACS Nano, Vol. 11, No. 1, pp. 112-125, 2017. https://doi.org/10.1021/acsnano.6b04930
  32. B. Kim, T. J. Norman, R. S. Jones, D.-I. Moon, J.-W. Han, and M. Meyyappan, "Carboxylated Single-Walled Carbon Nanotube Sensors with Varying pH for the Detection of Ammonia and Carbon Dioxide Using an Artificial Neural Network", ACS Appl. Nano Mater., Vol. 2, No. 10, pp. 6445-6451, 2019. https://doi.org/10.1021/acsanm.9b01401
  33. J.-H. Ahn, B. Choi, and S.-J. Choi, "Understanding the signal amplification in dual-gate FET-based biosensors", J. Appl. Phys, Vol. 128, No. 18, pp. 184502, 2020. https://doi.org/10.1063/5.0010136
  34. B. Cao et al., "How to optimize materials and devices via design of experiments and machine learning: Demonstration using organic photovoltaics", ACS Nano, Vol. 12, No. 8, pp. 7434-7444, 2018. https://doi.org/10.1021/acsnano.8b04726
  35. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, "2D transition metal dichalcogenides", Nat. Rev. Mater., Vol. 2, No. 8, pp. 17033, 2017. https://doi.org/10.1038/natrevmats.2017.33
  36. Z. Lin et al., "2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications", 2D Mater., Vol. 3, No. 4, pp. 042001, 2016. https://doi.org/10.1088/2053-1583/3/4/042001
  37. A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures", Nature, Vol. 499, No. 7459, pp. 419-425, 2013. https://doi.org/10.1038/nature12385
  38. T. Hussain, T. Kaewmaraya, S. Chakraborty, and R. Ahuja, "Defect and substitution-induced silicene sensor to probe toxic gases", J. Phys. Chem. C, Vol. 120, No. 44, pp. 25256-25262, 2016. https://doi.org/10.1021/acs.jpcc.6b08973
  39. N. C. Frey, D. Akinwande, D. Jariwala, and V. B. Shenoy, "Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing", ACS Nano, Vol. 14, No. 10, pp. 13406-13417, 2020. https://doi.org/10.1021/acsnano.0c05267
  40. C.-H. Lee et al., "Atomically thin p-n junctions with van der Waals heterointerfaces", Nat. Nanotechnol., Vol. 9, No. 9, pp. 676, 2014. https://doi.org/10.1038/nnano.2014.150
  41. L. Bassman et al., "Active learning for accelerated design of layered materials", npj Comput. Mater., Vol. 4, No. 1, pp. 1-9, 2018. https://doi.org/10.1038/s41524-017-0060-9
  42. P. Lin and F. Yan, "Organic thin-film transistors for chemical and biological sensing", Adv. Mater., Vol. 24, No. 1, pp. 34-51, 2012. https://doi.org/10.1002/adma.201103334
  43. M. H. Lee, "Machine Learning for Understanding the Relationship between the Charge Transport Mobility and Electronic Energy Levels for n-Type Organic Field-Effect Transistors", Adv. Electron. Mater., Vol. 5, No. 12, pp. 1900573, 2019. https://doi.org/10.1002/aelm.201900573
  44. S. Mazurenko, Z. Prokop, and J. Damborsky, "Machine learning in enzyme engineering", ACS Catal., Vol. 10, No. 2, pp. 1210-1223, 2019.
  45. J. Song et al., "A Sequential Multidimensional Analysis Algorithm for Aptamer Identification based on Structure Analysis and Machine Learning", Anal. Chem., Vol. 92, No. 4, pp. 3307-3314, 2019. https://doi.org/10.1021/acs.analchem.9b05203
  46. N. Nakatsuka et al., "Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing", Science, Vol. 362, No. 6412, pp. 319-324, 2018. https://doi.org/10.1126/science.aao6750
  47. Y. Kim et al., "A bioinspired flexible organic artificial afferent nerve", Science, Vol. 360, No. 6392, pp. 998-1003, 2018. https://doi.org/10.1126/science.aao0098
  48. C. Wan et al., "An artificial sensory neuron with tactile perceptual learning", Adv. Mater., Vol. 30, No. 30, pp. 1801291, 2018. https://doi.org/10.1002/adma.201801291