• 제목/요약/키워드: Machine knowledge

검색결과 646건 처리시간 0.026초

공문서의 기계가독형(Machine Readable) 전환 방법 제언 (Suggestions on how to convert official documents to Machine Readable)

  • 임진희
    • 기록학연구
    • /
    • 제67호
    • /
    • pp.99-138
    • /
    • 2021
  • 빅데이터 시대에 정형데이터 뿐만 아니라 비정형데이터를 분석하는 것이 중요한 과제로 대두되고 있다. 정부기관이 생산하는 공문서도 텍스트 기반의 대형 비정형데이터로 빅데이터 분석의 대상이 된다. 기관 내부의 업무효율, 지식관리, 기록관리 등의 관점에서 공문서 빅데이터를 분석하여 유용한 시사점을 도출해 나가야 할 것이다. 그러나, 현재 공공기관이 보유 중인 공문서의 상당수가 개방포맷이 아니어서 빅데이터 분석을 하려면 비트스트림에서 텍스트를 추출하는 전처리 과정이 요구된다. 또한, 문서파일 내에 맥락 메타데이터가 충분히 저장되어 있지 못하여 품질 높은 분석을 하려면 별도의 메타데이터 확보 노력이 필요하다. 결론적으로 현재의 공문서는 기계가독(machine readable) 수준이 낮아 빅데이터 분석에 비용이 많이 들게 된다. 이 연구에서는 향후 공문서가 기계가독 수준을 높이기 위해서는 공문서의 개방포맷화, 기안문 서식의 표준태그화, 자기 기술(self-descriptive) 메타데이터 확보, 문서 텍스트 태깅 등이 선행될 필요가 있다는 점을 제안한다. 첫째, 문서가 스스로를 설명하기 위해 추가되어야 하는 메타데이터 항목들을 제시하고 이 메타데이터들이 기계가독형이 되도록 문서파일에 저장하는 방법을 제안한다. 둘째, 문서 내용 분석 시 자연어 처리에만 의존하지 않고 행정 맥락에 따라 중요한 키워드를 미리 국제표준 태그로 마킹하여 기계가독형이 되도록 하는 방안을 제안한다.

Hybrid machine learning with mode shape assessment for damage identification of plates

  • Pei Yi Siow;Zhi Chao Ong;Shin Yee Khoo;Kok-Sing Lim;Bee Teng Chew
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.485-500
    • /
    • 2023
  • Machine learning-based structural health monitoring (ML-based SHM) methods are researched extensively in the recent decade due to the availability of advanced information and sensing technology. ML methods are well-known for their pattern recognition capability for complex problems. However, the main obstacle of ML-based SHM is that it often requires pre-collected historical data for model training. In most actual scenarios, damage presence can be detected using the unsupervised learning method through anomaly detection, but to further identify the damage types would require prior knowledge or historical events as references. This creates the cold-start problem, especially for new and unobserved structures. Modal-based methods identify damages based on the changes in the structural global properties but often require dense measurements for accurate results. Therefore, a two-stage hybrid modal-machine learning damage detection scheme is proposed. The first stage detects damage presence using Principal Component Analysis-Frequency Response Function (PCA-FRF) in an unsupervised manner, whereas the second stage further identifies the damage. To solve the cold-start problem, mode shape assessment using the first mode is initiated when no trained model is available yet in the second stage. The damage identified by the modal-based method would be stored for future training. This work highlights the performance of the scheme in alleviating the cold-start issue as it transitions through different phases, starting from zero damage sample available. Results showed that single and multiple damages can be identified at an acceptable accuracy level even when training samples are limited.

다계층 퍼셉트론의 온라인 학습에서 학습 순서 제어의 효과 (Effect of Training Sequence Control in On-line Learning for Multilayer Perceptron)

  • 이재영;김황수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권7호
    • /
    • pp.491-502
    • /
    • 2010
  • 인간이 교육을 통해 지식을 습득하고 발전시키는 과정에서, 이전 단계에서의 학습 진행 과정은 향후 학습에 영향을 미친다. 이것은 기계 학습에서도 고려되어야 할 사항으로 실제 기계 학습에서 학습순서의 제어가 어떤 효과가 있는지 살펴볼 필요가 있다. 본 연구에서는 MLP의 학습에서 지도자가 목표값을 알려주는 역할은 물론, 학습 대상의 지식 정도를 고려하여 자료들의 학습 순서를 제어하는 추가적 역할도 수행할 때, 학습 과정에 미치는 효과를 실험한다. 실험 방법은 SOM과 MLP를 이용하여 분류 문제에 적용한다. SOM은 지도자가 학습 순서를 결정하기 위한 학습 자료들의 범주화에 이용되고, MLP는 학습 대상이 된다. 제안하는 방법은 SOM을 학습 자료의 전처리 방법이 아닌, 학습 과정 동안 학습 자료의 선택에 이용하는 점에서 여타 연구들과 차이가 있으며, 실험 결과는 학습에 사용되는 자료의 수와 학습 횟수에서 개선 효과가 있음을 보여준다.

기계가독형사전과 코퍼스에서 추출한 의미정보를 이용한 명사열의 의미해석 (Interpretation of Noun Sequence using Semantic Information Extracted from Machine Readable Dictionary and Corpus)

  • 이경순;김도완;김길창;최기선
    • 인지과학
    • /
    • 제12권1_2호
    • /
    • pp.11-24
    • /
    • 2001
  • 명사열의 의미해석은 명사들 사이의 의미적인 관계를 찾는 것으로, 한국어에서 명사열의 출현은 보편적인 현상이며, 그 생성 또한 비교적 자유롭다. 본 논문에서는 기계가독형사전과 코퍼스로부터 명사 사이의 <목적>, <물건-재료>, <원인>등과 같은 의미관계 정보를 자동으로 추출한다. 추출한 의미관계정보에 기반하여 의미망을 구축하고. 의미 정보와 서술성 명사의 하위 범주 정보를 이용하여 명사열을 해석하는 방법을 제안하였다. 본 논문에서는 명사열의의미 해석 대상을 한국어 명사열의 대부분의 차지하는 수싲 명사+핵심명사 형태로 한정하였다. 기계가독형사전과 코퍼스로부터 추출한 의미정보와 하위 범주를 이용한 명사열의미 해석은 기존의 기계가독형사전 기반 의미 해석보다 정확률 +40.30%,적용률+12.73%의 성능 향상을 나나태었다.

  • PDF

개인화된 전문가 그룹을 활용한 추천 시스템 (Personalized Expert-Based Recommendation)

  • 정연오;이성우;이지형
    • 한국지능시스템학회논문지
    • /
    • 제23권1호
    • /
    • pp.7-11
    • /
    • 2013
  • 전문가의 지식을 기반으로 한 추천시스템에 대한 다양한 연구가 최근 활발히 진행되고 있다. 지금까지의 전문가 기반 추천 시스템이 공통된 전문가 그룹의 지식을 바탕으로 모두에게 아이템을 추천하였다면, 본 논문에서는 개인의 필요와 전문가에 대한 관점을 반영한 개인화된 전문가 그룹의 지식을 기반으로 한 추천 시스템을 제안한다. 개인화된 전문가 그룹을 찾는 과정이 제안하는 추천 시스템에서 가장 중요한 부분이다. 이를 위해 개인화된 전문가를 효율적으로 찾아내는 지지 벡터 머신(SVM) 기반 기법을 제안한다. 추천 시스템에서 널리 사용되는 k 근접이웃 알고리즘과의 비교를 통하여서 개인화된 전문가를 기반으로 한 협업 필터링 추천 시스템의 효용성을 입증한다.

Movie Popularity Classification Based on Support Vector Machine Combined with Social Network Analysis

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • 한국IT서비스학회지
    • /
    • 제16권3호
    • /
    • pp.167-183
    • /
    • 2017
  • The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.

방한 관광객의 온라인 리뷰에 대한 빅데이터 분석 기반의 감성분석 및 평점 예측모형 (Sentiment Analysis and Star Rating Prediction Based on Big Data Analysis of Online Reviews of Foreign Tourists Visiting Korea)

  • 홍태호
    • 지식경영연구
    • /
    • 제23권1호
    • /
    • pp.187-201
    • /
    • 2022
  • 관광객이 작성한 온라인 리뷰는 관광산업의 관리 및 운영에 중요한 정보를 제공한다. 평점은 제품이나 서비스에 대한 정량적인 평가로 간편하지만 관광객의 진실한 태도를 반영하기 어려우며 평점과 리뷰내용에 대한 불일치 문제도 발생하고 있다. 불일치 문제는 잠재고객에게 혼동을 줄 수 있으며 구매의사결정에도 영향을 미칠 수 있다. 본 연구에서는 온라인 리뷰기반의 평점 예측모형을 통해 평점과 리뷰내용의 불일치 문제를 해결하고자 한다. 한국을 방문한 외국인 관광객이 작성한 관광지와 호텔에 대한 리뷰의 감성분석을 통해 평점과 감성의 차이를 비교하고 TF-IDF vectorization과 감성분석 결과로 변수를 선정하였다. 로짓, 인공신경망, SVM(Support Vector Machine)을 적용하여 평점을 분류하고, 인공신경망, SVR(Support Vector Regression)을 통해 평점을 예측하였다. 평점 분류모형과 예측모형 모두 불일치한 리뷰를 제거하고 감성분석을 반영한 모형에서 우수한 성과를 보여주었다. 본 연구에서 제안한 온라인 리뷰 기반의 평점 예측모형은 평점과 리뷰내용에 대한 불일치 문제를 해결하여 신뢰할 수 있는 정보를 제공하였으며 평점이 없는 온라인 리뷰에도 활용할 수 있을 것이다.

기지국 상태 조정을 위한 강화 학습 기법 분석 (Analysis of Reinforcement Learning Methods for BS Switching Operation)

  • 박혜빈;임유진
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권2호
    • /
    • pp.351-358
    • /
    • 2018
  • 강화 학습은 변화하는 환경에서의 최적의 보상을 얻을 수 있는 행동을 결정하기 위한 정책을 얻는 기계 학습 기법이다. 하지만 기존에 연구되어 온 강화 학습은 불확실하고 연속적인 실제 환경에서 최적의 행동을 얻기 위해 발생되는 높은 계산 복잡도 문제와 학습된 결과를 얻기 위해서는 많은 시간이 소요 된다는 문제점을 가지고 있다. 앞에서 언급한 문제를 해결하기 위해, 높은 계산 복잡도 문제를 해결을 위해서는 강화 학습을 구성하는 가치 함수와 정책을 독립적으로 구성하는 AC(actor-critic) 기법이 제안되었다. 그리고 빠른 학습 결과를 얻기 위해 기 학습된 지식을 새로운 환경에서 이용하여 기존 학습보다 빠르게 학습 결과를 얻을 수 있는 전이 학습(transfer learning) 기법이 제안되었다. 본 논문에서는 기존에 연구되어 왔던 기계 학습 기법의 향상 기법인 AC 기법과 전이 학습 기법에 대해 소개하고, 이를 무선 액세스 네트워크 환경에서 기지국 상태 조정을 위해 적용되고 있는 사례를 소개한다.

클러스터링 기법을 이용한 이륜차 사고의 특징 분류 (Classification of Characteristics in Two-Wheeler Accidents Using Clustering Techniques)

  • 허원진;강진호;이소현
    • 지식경영연구
    • /
    • 제25권1호
    • /
    • pp.217-233
    • /
    • 2024
  • 최근 배달문화의 확산으로 이륜차 수요가 증가하면서 이륜차 운행도 함께 증가하고 있다. 이륜차 운행은 혼잡한 교통상황이나 경제적으로 효율적이지만 이륜차 난폭 운전과 명확하게 정립되지 않은 이륜차에 대한 교통 법규로 이륜차 사고는 새로운 사회문제로 나타나고 있다. 이륜차는 차체 특성 상 치사율이 높기 때문에 이륜차 사고가 발생하면 그 심각성 및 위험이 크다. 그러므로, 이륜차 사고에 대한 특성을 분석함으로써 이륜차 사고의 특성을 제대로 파악하는 것이 필요하다. 그리하여, 본 연구에서는 이륜차 사고 데이터를 기반으로 K-prototypes 알고리즘을 이용하여 이륜차 사고의 특성을 분류하였다. 그 결과, 이륜차 사고 특성에 따라 4개의 군집으로 분류되었다. 각 군집마다 사고발생 도로, 주요 위반법규, 사고 유형, 사고 발생 시간 등에서 다른 특성을 나타내었다. 이를 기반으로 이륜차 사고 예방을 위한 구체적인 방안을 제안한다. 각 사고 특성에 따른 단속 방법 및 규율을 개정함으로써 수도권 지역의 이륜차 사고 발생을 최소화하고 궁극적으로는 도로 안전성 향상에 기여한다. 더불어, 머신러닝 기법을 도시교통 및 안전 분야에 적용함으로써 관련 문헌확장에도 기여한다.

Knowledge Transfer Using User-Generated Data within Real-Time Cloud Services

  • Zhang, Jing;Pan, Jianhan;Cai, Zhicheng;Li, Min;Cui, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.77-92
    • /
    • 2020
  • When automatic speech recognition (ASR) is provided as a cloud service, it is easy to collect voice and application domain data from users. Harnessing these data will facilitate the provision of more personalized services. In this paper, we demonstrate our transfer learning-based knowledge service that built with the user-generated data collected through our novel system that deliveries personalized ASR service. First, we discuss the motivation, challenges, and prospects of building up such a knowledge-based service-oriented system. Second, we present a Quadruple Transfer Learning (QTL) method that can learn a classification model from a source domain and transfer it to a target domain. Third, we provide an overview architecture of our novel system that collects voice data from mobile users, labels the data via crowdsourcing, utilises these collected user-generated data to train different machine learning models, and delivers the personalised real-time cloud services. Finally, we use the E-Book data collected from our system to train classification models and apply them in the smart TV domain, and the experimental results show that our QTL method is effective in two classification tasks, which confirms that the knowledge transfer provides a value-added service for the upper-layer mobile applications in different domains.