• 제목/요약/키워드: Machine data analysis

검색결과 2,237건 처리시간 0.028초

머신러닝을 통한 건축 도시 데이터 분석의 기초적 연구 - 딥러닝을 이용한 유동인구 모델 구축 - (Machine Learning Based Architecture and Urban Data Analysis - Construction of Floating Population Model Using Deep Learning -)

  • 신동윤
    • 한국BIM학회 논문집
    • /
    • 제9권1호
    • /
    • pp.22-31
    • /
    • 2019
  • In this paper, we construct a prototype model for city data prediction by using time series data of floating population, and use machine learning to analyze urban data of complex structure. A correlation prediction model was constructed using three of the 10 data (total flow population, male flow population, and Monday flow population), and the result was compared with the actual data. The results of the accuracy were evaluated. The results of this study show that the predicted model of the floating population predicts the correlation between the predicted floating population and the current state of commerce. It is expected that it will help efficient and objective design in the planning stages of architecture, landscape, and urban areas such as tree environment design and layout of trails. Also, it is expected that the dynamic population prediction using multivariate time series data and collected location data will be able to perform integrated simulation with time series data of various fields.

Data Security on Cloud by Cryptographic Methods Using Machine Learning Techniques

  • Gadde, Swetha;Amutharaj, J.;Usha, S.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.342-347
    • /
    • 2022
  • On Cloud, the important data of the user that is protected on remote servers can be accessed via internet. Due to rapid shift in technology nowadays, there is a swift increase in the confidential and pivotal data. This comes up with the requirement of data security of the user's data. Data is of different type and each need discrete degree of conservation. The idea of data security data science permits building the computing procedure more applicable and bright as compared to conventional ones in the estate of data security. Our focus with this paper is to enhance the safety of data on the cloud and also to obliterate the problems associated with the data security. In our suggested plan, some basic solutions of security like cryptographic techniques and authentication are allotted in cloud computing world. This paper put your heads together about how machine learning techniques is used in data security in both offensive and defensive ventures, including analysis on cyber-attacks focused at machine learning techniques. The machine learning technique is based on the Supervised, UnSupervised, Semi-Supervised and Reinforcement Learning. Although numerous research has been done on this topic but in reference with the future scope a lot more investigation is required to be carried out in this field to determine how the data can be secured more firmly on cloud in respect with the Machine Learning Techniques and cryptographic methods.

A Prediction of Work-life Balance Using Machine Learning

  • Youngkeun Choi
    • Asia pacific journal of information systems
    • /
    • 제34권1호
    • /
    • pp.209-225
    • /
    • 2024
  • This research aims to use machine learning technology in human resource management to predict employees' work-life balance. The study utilized a dataset from IBM Watson Analytics in the IBM Community for the machine learning analysis. Multinomial dependent variables concerning workers' work-life balance were examined, categorized into continuous and categorical types using the Generalized Linear Model. The complexity of assessing variable roles and their varied impact based on the type of model used was highlighted. The study's outcomes are academically and practically relevant, showcasing how machine learning can offer further understanding of psychological variables like work-life balance through analyzing employee profiles.

A Study on the Classification of Variables Affecting Smartphone Addiction in Decision Tree Environment Using Python Program

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.68-80
    • /
    • 2022
  • Since the launch of AI, technology development to implement complete and sophisticated AI functions has continued. In efforts to develop technologies for complete automation, Machine Learning techniques and deep learning techniques are mainly used. These techniques deal with supervised learning, unsupervised learning, and reinforcement learning as internal technical elements, and use the Big-data Analysis method again to set the cornerstone for decision-making. In addition, established decision-making is being improved through subsequent repetition and renewal of decision-making standards. In other words, big data analysis, which enables data classification and recognition/recognition, is important enough to be called a key technical element of AI function. Therefore, big data analysis itself is important and requires sophisticated analysis. In this study, among various tools that can analyze big data, we will use a Python program to find out what variables can affect addiction according to smartphone use in a decision tree environment. We the Python program checks whether data classification by decision tree shows the same performance as other tools, and sees if it can give reliability to decision-making about the addictiveness of smartphone use. Through the results of this study, it can be seen that there is no problem in performing big data analysis using any of the various statistical tools such as Python and R when analyzing big data.

커널머신을 이용한 대학의 컴퓨터교육 만족도 분석 (An analysis of satisfaction index on computer education of university using kernel machine)

  • 피수영;박혜정;류경현
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권5호
    • /
    • pp.921-929
    • /
    • 2011
  • 정보화시대에 대학에서의 교양 컴퓨터교육과정은 컴퓨터에 대한 소양을 쌓고 정보화 사회에 능동적으로 대처할 수 있는 능력을 배양하여 생산성 향상은 물론 국가 간의 경쟁력에서 뒤지지 않게 하는데 목표를 두고 있다. 본 논문에서는 대학생을 대상으로 컴퓨터교육 만족도에 영향을 미치는 결정적인 변인의 발견 및 만족도를 분석한다. 전처리과정으로 자바 기반의 학습 도구인 속성 부분집합의 선택기반을 사용하여 최적의 변인을 선택한 후 통계적 학습이론에 기반을 둔 다중 최소제곱 서포트벡터 기계를 사용하고자 한다. 대학의 교양 컴퓨터교육 만족도 분석을 위하여 새로운 알고리즘을 제시하기 보다는 기존의 다중 서포트벡터기계와 다중 최소제곱 서포트벡터기계를 비교 분석한다. 본 논문의 연구결과는 컴퓨터교육 만족도 자료의 분석에서 다중 최소제곱 서포트벡터기계가 다중 서포트벡터기계와 같이 우수한 성과를 나타내는 것을 확인하였다.

구문분석과 기계학습 기반 하이브리드 텍스트 논조 자동분석 (Hybrid Approach to Sentiment Analysis based on Syntactic Analysis and Machine Learning)

  • 홍문표;신미영;박신혜;이형민
    • 한국언어정보학회지:언어와정보
    • /
    • 제14권2호
    • /
    • pp.159-181
    • /
    • 2010
  • This paper presents a hybrid approach to the sentiment analysis of online texts. The sentiment of a text refers to the feelings that the author of a text has towards a certain topic. Many existing approaches employ either a pattern-based approach or a machine learning based approach. The former shows relatively high precision in classifying the sentiments, but suffers from the data sparseness problem, i.e. the lack of patterns. The latter approach shows relatively lower precision, but 100% recall. The approach presented in the current work adopts the merits of both approaches. It combines the pattern-based approach with the machine learning based approach, so that the relatively high precision and high recall can be maintained. Our experiment shows that the hybrid approach improves the F-measure score for more than 50% in comparison with the pattern-based approach and for around 1% comparing with the machine learning based approach. The numerical improvement from the machine learning based approach might not seem to be quite encouraging, but the fact that in the current approach not only the sentiment or the polarity information of sentences but also the additional information such as target of sentiments can be classified makes the current approach promising.

  • PDF

선박 엔진용 캠 전용 측정기의 데이터 취득 및 해석 (Data Acquisition and Analysis of a Measuring Machine for Marine Engine′s Cams)

  • 강재관;이경휘
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.160-166
    • /
    • 2002
  • In this paper, data acquisition and analysis of a measuring machine for marine engine's cams is discussed. A rotary encoder and linear scale of the machine to measure angular and linear displacement respectively are interfaced to the PC via encoder board with 2 channels. The design and measuring data are interpolated by cubic spline curves to compute the precision error which is defined by the maximum and minimum distances between two curves. The minimum zone fit of ISO is employed to evaluate the geometric deviation. The developed system takes only 5 minutes to measure and analyze while the CMM takes over 1 hours even with a skilled operator.

Data acquisition and analysis of an exclusive measuring machine for marine engine′s cams

  • Dong-Woo;Jae-Gwan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.21-27
    • /
    • 2004
  • In this paper, data acquisition and analysis of a measuring machine for marine engine's cams are discussed. A rotary encoder and linear scale of the machine to measure angular and linear displacement, respectively, are interfaced to the PC via an encoder board with 2 channels. The design and measuring data are interpolated by cubic spline curves to compute the precision error which is defined by the maximum and minimum distances between two curves. The minimum zone fit of ISO is employed to evaluate the geometric deviation. The developed system takes only 5 minutes to measure and analyze the precision error while the CMM takes over I hours even with a skilled operator.

건물 내 재실자 감지 및 시각화를 위한 딥러닝 모델 - 증강현실 및 GIS 통합을 통한 안전 및 비상 대응 개선모델 프로토타이핑 - (Deep Learning-Based Occupancy Detection and Visualization for Architecture and Urban Data - Towards Augmented Reality and GIS Integration for Improved Safety and Emergency Response Modeling -)

  • 신동윤
    • 한국BIM학회 논문집
    • /
    • 제13권2호
    • /
    • pp.29-36
    • /
    • 2023
  • This study explores the potential of utilizing video-based data analysis and machine learning techniques to estimate the number of occupants within a building. The research methodology involves developing a sophisticated counting system capable of detecting and tracking individuals' entry and exit patterns. The proposed method demonstrates promising results in various scenarios; however, it also identifies the need for improvements in camera performance and external environmental conditions, such as lighting. The study emphasizes the significance of incorporating machine learning in architectural and urban planning applications, offering valuable insights for the field. In conclusion, the research calls for further investigation to address the limitations and enhance the system's accuracy, ultimately contributing to the development of a more robust and reliable solution for building occupancy estimation.

Regression Algorithms Evaluation for Analysis of Crosstalk in High-Speed Digital System

  • Minhyuk Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권6호
    • /
    • pp.1449-1461
    • /
    • 2024
  • As technology advances, processor speeds are increasing at a rapid pace and digital systems require a significant amount of data bandwidth. As a result, careful consideration of signal integrity is required to ensure reliable and high-speed data processing. Crosstalk has become a vital area of research in signal integrity for electronic packages, mainly because of the high level of integration. Analytic formulas were analyzed in this study to identify the features that can predict crosstalk in multi-conductor transmission lines. Through the analysis, five variables were found and obtained a dataset consisting of 302,500, data points. The study evaluated the performance of various regression models for optimization via automatic machine learning by comparing the machine learning predictions with the analytic solution. Extra tree regression consistently outperformed other algorithms, with coefficients of determination exceeding 0.9 and root mean square logarithmic errors below 0.35. The study also notes that different algorithms produced varied predictions for the two metrics.