• 제목/요약/키워드: Machine Learning Techniques

검색결과 1,117건 처리시간 0.02초

머신러닝 알고리즘 기반의 의료비 예측 모델 개발 (Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • 제1권1호
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

Implementing a Branch-and-bound Algorithm for Transductive Support Vector Machines

  • Park, Chan-Kyoo
    • Management Science and Financial Engineering
    • /
    • 제16권1호
    • /
    • pp.81-117
    • /
    • 2010
  • Semi-supervised learning incorporates unlabeled examples, whose labels are unknown, as well as labeled examples into learning process. Although transductive support vector machine (TSVM), one of semi-supervised learning models, was proposed about a decade ago, its application to large-scaled data has still been limited due to its high computational complexity. Our previous research addressed this limitation by introducing a branch-and-bound algorithm for finding an optimal solution to TSVM. In this paper, we propose three new techniques to enhance the performance of the branch-and-bound algorithm. The first one tightens min-cut bound, one of two bounding strategies. Another technique exploits a graph-based approximation to a support vector machine problem to avoid the most time-consuming step. The last one tries to fix the labels of unlabeled examples whose labels can be obviously predicted based on labeled examples. Experimental results are presented which demonstrate that the proposed techniques can reduce drastically the number of subproblems and eventually computational time.

프라이버시를 보호하는 분산 기계 학습 연구 동향 (Systematic Research on Privacy-Preserving Distributed Machine Learning)

  • 이민섭;신영아;천지영
    • 정보처리학회 논문지
    • /
    • 제13권2호
    • /
    • pp.76-90
    • /
    • 2024
  • 인공지능 기술은 스마트 시티, 자율 주행, 의료 분야 등 다양한 분야에서 활용 가능성을 높이 평가받고 있으나, 정보주체의 개인정보 및 민감정보의 노출 문제로 모델 활용이 제한되고 있다. 이에 따라 데이터를 중앙 서버에 모아서 학습하지 않고, 보유 데이터셋을 바탕으로 일차적으로 학습을 진행한 후 글로벌 모델을 최종적으로 학습하는 분산 기계 학습의 개념이 등장하였다. 그러나, 분산 기계 학습은 여전히 협력하여 학습을 진행하는 과정에서 데이터 프라이버시 위협이 발생한다. 본 연구는 분산 기계 학습 연구 분야에서 프라이버시를 보호하기 위한 연구를 서버의 존재 유무, 학습 데이터셋의 분포 환경, 참여자의 성능 차이 등 현재까지 제안된 분류 기준들을 바탕으로 유기적으로 분석하여 최신 연구 동향을 파악한다. 특히, 대표적인 분산 기계 학습 기법인 수평적 연합학습, 수직적 연합학습, 스웜 학습에 집중하여 활용된 프라이버시 보호 기법을 살펴본 후 향후 진행되어야 할 연구 방향을 모색한다.

Systematic Review of Bug Report Processing Techniques to Improve Software Management Performance

  • Lee, Dong-Gun;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.967-985
    • /
    • 2019
  • Bug report processing is a key element of bug fixing in modern software maintenance. Bug reports are not processed immediately after submission and involve several processes such as bug report deduplication and bug report triage before bug fixing is initiated; however, this method of bug fixing is very inefficient because all these processes are performed manually. Software engineers have persistently highlighted the need to automate these processes, and as a result, many automation techniques have been proposed for bug report processing; however, the accuracy of the existing methods is not satisfactory. Therefore, this study focuses on surveying to improve the accuracy of existing techniques for bug report processing. Reviews of each method proposed in this study consist of a description, used techniques, experiments, and comparison results. The results of this study indicate that research in the field of bug deduplication still lacks and therefore requires numerous studies that integrate clustering and natural language processing. This study further indicates that although all studies in the field of triage are based on machine learning, results of studies on deep learning are still insufficient.

딥러닝 기법을 사용하는 소프트웨어 결함 예측 모델 (Prediction Model of Software Fault using Deep Learning Methods)

  • 홍의석
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.111-117
    • /
    • 2022
  • 수십년간 매우 많은 소프트웨어 결함 예측 모델에 관한 연구들이 수행되었으며, 그들 중 기계학습 기법을 사용한 모델들이 가장 좋은 성능을 보였다. 딥러닝 기법은 기계학습 분야에서 가장 각광받는 기술이 되었지만 결함 예측 모델의 분류기로 사용된 연구는 거의 없었다. 몇몇 연구들은 모델의 입력 소스나 구문 데이터로부터 시맨틱 정보를 얻어내는데 딥러닝을 사용하였다. 본 논문은 3개 이상의 은닉층을 갖는 MLP를 이용하여 모델 구조와 하이퍼 파라미터를 변경하여 여러 모델들을 제작하였다. 모델 평가 실험 결과 MLP 기반 딥러닝 모델들은 기존 결함 예측 모델들과 Accuracy는 비슷한 성능을 보였으나 AUC는 유의미하게 더 우수한 성능을 보였다. 또한 또다른 딥러닝 모델인 CNN 모델보다도 더 나은 성능을 보였다.

Realtime Analysis of Sasang Constitution Types from Facial Features Using Computer Vision and Machine Learning

  • Abdullah;Shah Mahsoom Ali;Hee-Cheol Kim
    • Journal of information and communication convergence engineering
    • /
    • 제22권3호
    • /
    • pp.256-266
    • /
    • 2024
  • Sasang constitutional medicine (SCM) is one of the best traditional therapeutic approaches used in Korea. SCM prioritizes personalized treatment that considers the unique constitution of an individual and encompasses their physical characteristics, personality traits, and susceptibility to specific diseases. Facial features are essential for diagnosing Sasang constitutional types (SCTs). This study aimed to develop a real-time artificial intelligence-based model for diagnosing SCTs using facial images, building an SCTs prediction model based on a machine learning method. Facial features from all images were extracted to develop this model using feature engineering and machine learning techniques. The fusion of these features was used to train the AI model. We used four machine learning algorithms, namely, random forest (RF), multilayer perceptron (MLP), gradient boosting machine (GBM), and extreme gradient boosting (XGB), to investigate SCTs. The GBM outperformed all the other models. The highest accuracy achieved in the experiment was 81%, indicating the robustness of the proposed model and suitability for real-time applications.

Network Traffic Measurement Analysis using Machine Learning

  • Hae-Duck Joshua Jeong
    • 한국인공지능학회지
    • /
    • 제11권2호
    • /
    • pp.19-27
    • /
    • 2023
  • In recent times, an exponential increase in Internet traffic has been observed as a result of advancing development of the Internet of Things, mobile networks with sensors, and communication functions within various devices. Further, the COVID-19 pandemic has inevitably led to an explosion of social network traffic. Within this context, considerable attention has been drawn to research on network traffic analysis based on machine learning. In this paper, we design and develop a new machine learning framework for network traffic analysis whereby normal and abnormal traffic is distinguished from one another. To achieve this, we combine together well-known machine learning algorithms and network traffic analysis techniques. Using one of the most widely used datasets KDD CUP'99 in the Weka and Apache Spark environments, we compare and investigate results obtained from time series type analysis of various aspects including malicious codes, feature extraction, data formalization, network traffic measurement tool implementation. Experimental analysis showed that while both the logistic regression and the support vector machine algorithm were excellent for performance evaluation, among these, the logistic regression algorithm performs better. The quantitative analysis results of our proposed machine learning framework show that this approach is reliable and practical, and the performance of the proposed system and another paper is compared and analyzed. In addition, we determined that the framework developed in the Apache Spark environment exhibits a much faster processing speed in the Spark environment than in Weka as there are more datasets used to create and classify machine learning models.

Underwater Acoustic Research Trends with Machine Learning: General Background

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.147-154
    • /
    • 2020
  • Underwater acoustics that is the study of the phenomenon of underwater wave propagation and its interaction with boundaries, has mainly been applied to the fields of underwater communication, target detection, marine resources, marine environment, and underwater sound sources. Based on the scientific and engineering understanding of acoustic signals/data, recent studies combining traditional and data-driven machine learning methods have shown continuous progress. Machine learning, represented by deep learning, has shown unprecedented success in a variety of fields, owing to big data, graphical processor unit computing, and advances in algorithms. Although machine learning has not yet been implemented in every single field of underwater acoustics, it will be used more actively in the future in line with the ongoing development and overwhelming achievements of this method. To understand the research trends of machine learning applications in underwater acoustics, the general theoretical background of several related machine learning techniques is introduced in this paper.

On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection Techniques for SVM Speed Optimization with Application to e-Fraud Detection

  • AKINYELU, Andronicus Ayobami;ADEWUMI, Aderemi Oluyinka
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1348-1375
    • /
    • 2018
  • Support Vector Machine (SVM) is a well-known machine learning classification algorithm, which has been widely applied to many data mining problems, with good accuracy. However, SVM classification speed decreases with increase in dataset size. Some applications, like video surveillance and intrusion detection, requires a classifier to be trained very quickly, and on large datasets. Hence, this paper introduces two filter-based instance selection techniques for optimizing SVM training speed. Fast classification is often achieved at the expense of classification accuracy, and some applications, such as phishing and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also introduces two wrapper-based instance selection techniques for improving SVM predictive accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo Search Algorithm and Bat Algorithm. The proposed techniques are validated on three popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the proposed techniques are validated on 20 other datasets provided by UCI data repository. Moreover, statistical analysis is performed and experimental results reveals that the filter-based and wrapper-based techniques significantly improved SVM classification speed. Also, results reveal that the wrapper-based techniques improved SVM predictive accuracy in most cases.

N-gram Opcode를 활용한 머신러닝 기반의 분석 방지 보호 기법 탐지 방안 연구 (A Study on Machine Learning Based Anti-Analysis Technique Detection Using N-gram Opcode)

  • 김희연;이동훈
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.181-192
    • /
    • 2022
  • 신종 악성코드의 등장은 기존 시그니처 기반의 악성코드 탐지 기법들을 무력화시키며 여러 분석 방지 보호 기법들을 활용하여 분석가들의 분석을 어렵게 하고 있다. 시그니처 기반의 기존 연구는 악성코드 제작자가 쉽게 우회할 수 있는 한계점을 지닌다. 따라서 본 연구에서는 악성코드 자체의 특성이 아닌, 악성코드에 적용될 수 있는 패커의 특성을 활용하여, 단시간 내에 악성코드에 적용된 패커의 분석 방지 보호 기법을 탐지하고 분류해낼 수 있는 머신러닝 모델을 구축하고자 한다. 본 연구에서는 패커의 분석 방지 보호 기법을 적용한 악성코드 바이너리를 대상으로 n-gram opcode를 추출하여 TF-IDF를 활용함으로써 피처(feature)를 추출하고 이를 통해 각 분석 방지 보호 기법을 탐지하고 분류해내는 머신러닝 모델 구축 방법을 제안한다. 본 연구에서는 실제 악성코드를 대상으로 악성코드 패킹에 많이 사용되는 상용 패커인 Themida와 VMProtect로 각각 분석 방지 보호 기법을 적용시켜 데이터셋을 구축한 뒤, 6개의 머신러닝 모델로 실험을 진행하였고, Themida에 대해서는 81.25%의 정확도를, VMProtect에 대해서는 95.65%의 정확도를 보여주는 최적의 모델을 구축하였다.