• Title/Summary/Keyword: Machine Learning Education

Search Result 324, Processing Time 0.021 seconds

Vocabulary Improvement Class Design Linking Elementary School AI Education and Writing Education using 'Machine Learning for Kids' (머신러닝 포키즈를 이용한 초등 AI 교육과 글쓰기 교육을 연계한 어휘력 향상 수업설계)

  • Kim, Ji-Song;Lee, Myung-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.719-722
    • /
    • 2021
  • 최근 인공지능의 새로운 기술들이 하루가 다르게 발전하고 있다. 이에 본 연구에서는 인공지능 교육과 글쓰기 교육을 연계하여 초등학생들의 어휘력 향상을 위한 수업을 설계하고자 한다. 그 방법으로는 본 수업에 앞서 어휘 10문제를 테스트하여 실험에 참가하기 전의 어휘력을 점검한다. 그 후 머신러닝 포키즈를 이용하여 여러 감정에 해당되는 단어들을 다양하게 훈련하도록 하였고, 그 후 관련된 어휘 10문제를 다시 테스트 하였다. 실험 결과 실험에 참가하기 전에는 100점 만점에 58.8점으로 나왔으나 훈련 후의 결과는 평균 68점으로 모든 학생의 성적이 좋아지는 결과를 얻을 수 있었다. 어휘력 문항수가 적은 점과 10명의 실험참가자로 일반화할 수 없는 한계가 있다. 향후 초등교재 한권을 선정하여 어휘를 모두 분석한 후 가장 많이 등장하는 어휘를 골라내어 테스트하여 좀 더 통계적으로 의미 있는 분석을 하고자 한다.

  • PDF

Case Analysis for Introduction of Machine Learning Technology to the Mining Industry (머신러닝 기술의 광업 분야 도입을 위한 활용사례 분석)

  • Lee, Chaeyoung;Kim, Sung-Min;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study investigated use cases of machine learning technology in domestic medical, manufacturing, finance, automobile, urban sectors and those in overseas mining industry. Through a literature survey, it was found that the machine learning technology has been widely utilized for developing medical image information system, real-time monitoring and fault diagnosis system, security level of information system, autonomous vehicle and integrated city management system. Until now, the use cases have not found in the domestic mining industry, however, several overseas projects have found that introduce the machine learning technology to the mining industry for improving the productivity and safety of mineral exploration or mine development. In the future, the introduction of the machine learning technology to the mining industry is expected to spread gradually.

Exploring the Predictive Variables of Government Statistical Indicators on Retail sales Using Machine Learning: Focusing on Pharmacy (머신러닝을 이용한 정부통계지표가 소매업 매출액에 미치는 예측 변인 탐색: 약국을 중심으로)

  • Lee, Gwang-Su
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.125-135
    • /
    • 2022
  • This study aims to explore variables using machine learning and provide analysis techniques suitable for predicting pharmacy sales whether government statistical indicators built to create an industrial ecosystem based on data, network, and artificial intelligence affect pharmacy sales. Therefore, this study explored predictive variables and performance through machine learning techniques such as Random Forest, XGBoost, LightGBM, and CatBoost using analysis data from January 2016 to December 2021 for 28 government statistical indicators and pharmacies in the retail sector. As a result of the analysis, economic sentiment index, economic accompanying index circulation change, and consumer sentiment index, which are economic indicators, were found to be important variables affecting pharmacy sales. As a result of examining the indicators MAE, MSE, and RMSE for regression performance, random forests showed the best performance than XGBoost, LightGBM, and CatBoost. Therefore, this study presented variables and optimal machine learning techniques that affect pharmacy sales based on machine learning results, and proposed several implications and follow-up studies.

A Study on Prediction Model Performance of Scaffold Pore Size Using Machine Learning Regression Method (머신 러닝 회귀 방안을 이용한 인공지지체 기공 크기 예측모델 성능에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • In this paper, We need to change all print factors when which print scaffold with 400 ㎛ pore using FDM 3d printer. Therefore the print quantity is 10 billion times, So we are difficult to print on workplace. To solve the problem, we used the prediction model based machine learning regression. We preprocessed and learned the securing print condition data, and we produced different kinds of prediction models. We predicted the pore size of scaffolds not securing with new print condition data using prediction models. We have derived the print conditions that satisfy the pore size of 400 ㎛ among the predicted print conditions of pore size. We printed the scaffolds 5 times on the condition. We measured the pore size of the printed scaffold and compared the average pore size with the predicted pore size. We confirmed that error was less than 1%, and we were identify the model with the highest pore size prediction performance of scaffold.

Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels

  • Wang, Chenchong;Shen, Chunguang;Huo, Xiaojie;Zhang, Chi;Xu, Wei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1008-1012
    • /
    • 2020
  • In order to make reasonable design for the improvement of comprehensive mechanical properties of RAFM steels, the design system with both machine learning and high-throughput optimization algorithm was established. As the basis of the design system, a dataset of RAFM steels was compiled from previous literatures. Then, feature engineering guided random forests regressors were trained by the dataset and NSGA II algorithm were used for the selection of the optimal solutions from the large-scale solution set with nine composition features and two treatment processing features. The selected optimal solutions by this design system showed prospective mechanical properties, which was also consistent with the physical metallurgy theory. This efficiency design mode could give the enlightenment for the design of other metal structural materials with the requirement of multi-properties.

Proposal for AI/SW Education of Machine learning based on the chemical element symbol image for the Utilizing Future Intelligent Laboratory (미래 지능형 과학실 활용을 위한 "화학원소기호 이미지 기계학습 AI·SW교육 프로그램" 제안)

  • Park, Min-Sol;Park, Ju-Bon;Park, Yu-Min;Cho, Young-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.629-632
    • /
    • 2020
  • 현대사회는 4차 산업혁명 시대가 도래하면서 초연결, 초지능, 초융합 사회로 변화되고 있다. 최근 교육부는 많은 변화가 요구되고 있는 교육분야, 교육정책 방안으로 SW(소프트웨어)교육에 AI(인공지능) 교육까지 추가되야 한다고 제안하고 2024년까지 첨단 기술을 활용한 지능형 과학실을 구축한다고 밝혔다. 이에 본 논문에서는 정부의 교육정책 방안이 원활하게 진행될 수 있고 융합 교육 분야에서 활용될 수 있는 "미래 지능형 과학실 활용을 위한 화학원소기호 이미지 기계학습 AI·SW교육 프로그램"을 제안하고자 한다.

  • PDF

Exploration of Factors on Pre-service Science Teachers' Major Satisfaction and Academic Satisfaction Using Machine Learning and Explainable AI SHAP (머신러닝과 설명가능한 인공지능 SHAP을 활용한 사범대 과학교육 전공생의 전공만족도 및 학업만족도 영향요인 탐색)

  • Jibeom Seo;Nam-Hwa Kang
    • Journal of Science Education
    • /
    • v.47 no.1
    • /
    • pp.37-51
    • /
    • 2023
  • This study explored the factors influencing major satisfaction and academic satisfaction of science education major students at the College of Education using machine learning models, random forest, gradient boosting model, and SHAP. Analysis results showed that the performance of the gradient boosting model was better than that of the random forest, but the difference was not large. Factors influencing major satisfaction include 'satisfaction with science teachers in high school corresponding to the subject of one's major', 'motivation for teaching job', and 'age'. Through the SHAP value, the influence of variables was identified, and the results were derived for the group as a whole and for individual analysis. The comprehensive and individual results could be complementary with each other. Based on the research results, implications for ways to support pre-service science teachers' major and academic satisfaction were proposed.

AI Education Programs for Deep-Learning Concepts (딥러닝 개념을 위한 인공지능 교육 프로그램)

  • Ryu, Miyoung;Han, SeonKwan
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2019
  • The purpose of this study is to develop an educational program for learning deep learning concepts for elementary school students. The model of education program was developed the deep-learning teaching method based on CT element-oriented teaching and learning model. The subject of the developed program is the artificial intelligence image recognition CNN algorithm, and we have developed 9 educational programs. We applied the program over two weeks to sixth graders. Expert validity analysis showed that the minimum CVR value was more than .56. The fitness level of learner level and the level of teacher guidance were less than .80, and the fitness of learning environment and media above .96 was high. The students' satisfaction analysis showed that students gave a positive evaluation of the average of 4.0 or higher on the understanding, benefit, interest, and learning materials of artificial intelligence learning.

The Effects of STEAM-based Storytelling Robotics Education on Learning Attitudes of Elementary School Girls (STEAM 기반 스토리텔링 로봇활용교육이 초등학교 여학생들의 학습태도에 미치는 영향)

  • Sung, Younghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2015
  • Robotics education in elementary school, It is difficult for girls to continue the motivation and willingness to learn because of a negative attitude and low recognition against the machine. In this paper, we studied method to improve the learning attitude through STEAM-based robotics education utilizing storytelling and robot smart learning system for elementary school girls. The curriculum is composed of nine themes which are selected from famous classic fairy tales for girls and we developed robot smart learning system which allows girls to enjoy robot design&control, collaborative learning, and sharing their ideas by using smart-phone. As a t-test results of learning attitude, the two groups showed statistically significant difference, the experimental group was higher average than the control group in terms of learning attitude. The robot smart learning system is effective for collaborative learning activities and maintaining learning motivation of elementary school girls.

A Container Orchestration System for Process Workloads

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.270-278
    • /
    • 2023
  • We propose a container orchestration system for process workloads that combines the potential of big data and machine learning technologies to integrate enterprise process-centric workloads. This proposed system analyzes big data generated from industrial automation to identify hidden patterns and build a machine learning prediction model. For each machine learning case, training data is loaded into a data store and preprocessed for model training. In the next step, you can use the training data to select and apply an appropriate model. Then evaluate the model using the following test data: This step is called model construction and can be performed in a deployment framework. Additionally, a visual hierarchy is constructed to display prediction results and facilitate big data analysis. In order to implement parallel computing of PCA in the proposed system, several virtual systems were implemented to build the cluster required for the big data cluster. The implementation for evaluation and analysis built the necessary clusters by creating multiple virtual machines in a big data cluster to implement parallel computation of PCA. The proposed system is modeled as layers of individual components that can be connected together. The advantage of a system is that components can be added, replaced, or reused without affecting the rest of the system.