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Abstract  

We propose a container orchestration system for process workloads that combines the potential of big data 

and machine learning technologies to integrate enterprise process-centric workloads. This proposed system 

analyzes big data generated from industrial automation to identify hidden patterns and build a machine 

learning prediction model. For each machine learning case, training data is loaded into a data store and 

preprocessed for model training. In the next step, you can use the training data to select and apply an 

appropriate model. Then evaluate the model using the following test data: This step is called model 

construction and can be performed in a deployment framework. Additionally, a visual hierarchy is constructed 

to display prediction results and facilitate big data analysis. In order to implement parallel computing of PCA 

in the proposed system, several virtual systems were implemented to build the cluster required for the big data 

cluster. The implementation for evaluation and analysis built the necessary clusters by creating multiple virtual 

machines in a big data cluster to implement parallel computation of PCA. The proposed system is modeled as 

layers of individual components that can be connected together. The advantage of a system is that components 

can be added, replaced, or reused without affecting the rest of the system. 
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1. INTRODUCTION 

In the field of industrial automation based on distributed cloud computing, information exchange is essential, 

and techniques used to improve business process models and services through it are necessary [1]. To do this, 

it is necessary to manage, process, and analyze the data collected during manufacturing production. 

Accordingly, the service of big data and machine learning technology is needed in the field of industrial 

automation [2]. In this case, the most important step is to establish a standard and resilient architecture that 

integrates metadata-based big data and machine learning technologies for efficient industrial data analysis [3]. 

We propose a container orchestration system for process workloads for enterprise process-oriented workload 

integrated execution by integrating the potential of big data and machine learning technology. The proposed 

system consists of 4 layers: Process Workload, Functional Layer, Information Layer, and Asset Integration. 
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Since the data generated in the process creation stage are heterogeneous in form and use, the proposed system 

can function to integrate them into a common information model. And it applies a standard metadata protocol 

to ensure heterogeneous data exchange. This is because data is described through semantics and becomes 

information, so the information model was constructed by standardizing the metadata registry. Various types 

of data storage are used to store process data, metadata and analytical models. In addition, this proposed system 

analyzes big data generated from industrial automation to identify hidden patterns and builds a machine 

learning (ML) prediction model. For each machine learning use case, the training data is loaded into a data 

store and configured to be pre-processed for model training. The next step is to use the training data to select 

and apply an appropriate model. The model is then evaluated using the following test data. This step is called 

model building, and can be performed in a batch processing framework. In addition, a service that configures 

a visual layer to display prediction results and facilitate big data analysis is also configured. The structure of 

this thesis is as follows. Chapter 2 describes related research, and Chapter 3 describes the components and 

operating scenarios of the proposed system. In Chapter 4, application cases and comparative analysis are 

described, and finally, in Chapter 5, conclusions are made. 

 

2. RELATED WORK 

Existing machine learning algorithms struggle to process the massive amounts of data generated by smart 

production systems. This is because it is designed under the assumption that the data set and model parameters 

must be completely loaded into memory [5]. Scalable ML algorithms are a common way to solve this problem, 

as they are well-suited to handling large datasets and/or models with many parameters. In particular, distributed 

ML algorithms represent most state-of-the-art scalable ML methods [6]. It can be split into two groups of 

algorithms that use different methods of parallelism: data parallelism and model parallelism. In the first group, 

data sets are divided into smaller pieces that are stored on nodes of a computer cluster. All parameters of the 

model are partially updated simultaneously at each node and combined afterwards. In the second group, the 

model parameters are divided into subsets and updated simultaneously at each node using the full data set. 

There are also several hybrid methods in which the dataset as well as the model parameters are partitioned and 

distributed to clusters [7, 8]. In recent years, several tools have been developed that allow the use of distributed 

ML algorithms on big data. Mahout, Spark MLlib and H2O are most used in industry and academia [9]. Each 

of these can be combined with different distributed data processing engines. For example, Mahout can work 

with MapReduce, Spark, and H2O. These frameworks represent a distributed batch (offline) learning paradigm, 

where models are trained on a training dataset consisting of historical data before being used to process new 

data [9]. In contrast, the stream (online) paradigm is required when an algorithm learns from data arriving as 

a stream. A relatively young framework called Samoa provides these ML algorithms in its distributed stream 

processing engines Storm, S4 and Samza [9]. A very detailed comparison of the mentioned four distributed 

ML frameworks in terms of algorithm availability, scalability and speed is discussed in [10]. 

 

3. PROPOSED SYSTEM: CONTAINER ORCHESTRATION SYSTEM FOR 

PROCESS WORKLOADS TITLE AND AUTHOR INFORMATION 

3.1 System Component 

In this chapter, we propose a container orchestration system for process workloads for integrated execution 

of process-oriented workloads by integrating big data and machine learning technologies. It is common for 

most process workload services to use batch data to build models that will later be deployed for online 
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prediction on stream data in industrial use cases. The system proposed in this paper consists of different layers 

as shown in Figure 1. 

 

 

Figure 1. The Conceptual Architecture 

◼ Process Workload. In this layer, business requirements, use case descriptions and the workload to be solved 

are defined. The results of data analysis for the process help stakeholders make appropriate decisions and 

optimize. In particular, the connectivity of the system for data sharing must be expanded and visually visible. 

Visual interfaces and dashboards are important for grasping difficult concepts or identifying hidden patterns 

within process data. The visualization layer displays prediction results and allows data scientists to add 

expertise in the form of semantic annotations to facilitate analysis tasks. So, this tier includes interactive 

analytics software, dashboards and client applications. 

 

◼ Functional Layer. This layer is about analyzing data to uncover hidden patterns and building ML predictive 

models. Training data for each machine learning use case is loaded from a data store and pre-processed for 

model training. The next step is to select and apply an appropriate model using the training data. The model is 

then evaluated using the training data. These steps are called model construction and can be performed in 

distributed batch processing. Once a trained model is determined to be suitable for solving a problem on a 

business process workload, it can be deployed in distributed stream processing for online prediction on stream 

data. 

 

◼ Information Layer. In this layer, shared data in the process is provided using semantic techniques. Semantics 

are applied in a metadata registry or a standardized information model for a particular branch. Shared data is 

maintained at this layer for later access and analysis. Therefore, in this paper, EMRA, an extended version of 

metadata, is applied. EMRA uses various types of data storage systems to store process data, metadata analysis 

and analysis models. These storage systems must be simultaneously scalable and highly coupling-tolerant. 
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◼ Asset Integration Layer. In this layer, components such as machines, people, products, and engineering 

systems are included. These components represent the company's primary data sources. The data generated by 

this layer is heterogeneous in form and purpose and needs to be unified through a common information model.  

Also, the transition from the physical environment to the virtual environment occurs at this layer. This includes 

the infrastructure and resources to capture digital/analog signals and make them available on the network as 

form data. 

 

3.2 Sequence Diagram 

Figure 2 show the flow of the proposed system in a sequence diagram. 

 

 

Figure 2. Sequence Diagram of the Proposed System 

3.3 Principal Component Analysis 

This section demonstrates the benefits of the proposed architecture for specific application cases related to 

data analysis in enterprise environments. Data analysis often requires learning a system model from historical 

data and using the learned model for evaluation or processing of current process data. An example of such a 

model is the Principal Component Analysis (PCA) matrix, which has versatile enterprise applications such as 

dimension reduction and condition monitoring approaches [32–34]. The PCA matrix can be obtained by k = 

1… It is computed from the vector 𝑥𝑘 of historical measurements recorded at time instances of n. 

 

∑ 𝑥 =  
1
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∑ (𝑥𝑘 − 𝜇𝑥)(𝑥𝑘 − 𝜇𝑥

𝑛
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1
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Calculating the covariance matrix Σx requires O(𝑛 × 𝑛2c) operations, where nc denotes the number of 
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components in the past measurement vector. The automated computation for singular value decomposition is 

of the order of O(𝑛3c) [35]. In big data applications, a large number of past measurement vectors are evaluated 

so that the nc << n condition holds. In these applications, the computational effort for SVD is negligible 

compared to that for computing the covariance matrix. Parallel computation of the covariance matrix Σx is 

achieved using the relationship between Equations (3), (4), (5), (6) and Equation (7). Computing the sum of 

S1 and S2 on multiple workers is straightforward, but the entire covariance matrix Σx is quickly computed on 

a single machine in conjunction with equation (6). 
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Computing 𝑆1 and 𝑆2 on multiple workers is straightforward, but the entire covariance matrix Σx is quickly 

computed on a single machine by linking Equation (6). 

 
 

4. APPLICATION CASES AND COMPERATIVE ANALYSIS 

In this chapter, in order to implement parallel computing of PCA in the proposed system, several virtual 

systems were implemented to build clusters necessary for big data clusters.  

-Implementation of PCA: To implement the parallel computation of PCA, several virtual machines were 

created in the big data cluster to build the necessary cluster. VM resource specifications in Table 2 are applied. 

Since Figure 1 does not show many details of the platform presented, information on the technology, 

infrastructure and configuration used is shown in Table 1. 

 

Table 1. VM Resource Specification  

Item Details 

Processor 

 

Memory 

Storage 

Network 

OS 

Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz - 8 

Virtual CPUs (4 sockets with 2 cores per socket) 

32 GB 

512 GB HDD 

1 Gbit/s network card 

Ubuntu 16.04 xenial 

 

Table 2. Cluster Description 

Category Framework Description 

Data Ingestion Kafka Cluster 3 brokers, 20 partitions for the input and output 

topics 

Data Storage Hadoop Cluster 1 name node and 3 data nodes 
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MongoDB 

Influx DB 

single node 

single node 

Batch Processing Spark Cluster 1 master node and 3 workers 

Stream Processing Kubernetes Cluster 1 master and 3 nodes 

 

The PCA algorithm was implemented on a big data platform with a data set of approximately 36 million 

historical measurement vectors (each with 41 components) consisting of enterprise process sensor data 

generated using the TESIM simulation model [36]. The implementation was carried out in two modes. 

 

A) Batch Processing Mode (PCA Model Building): In this mode, the training data set is uploaded as a 

distributed Spark data frame in the HDFS system, and the number of different Spark workers is 

calculated. The PySpark PCA class is used to train a model to project vectors into a low-dimensional 

space. The result of this calculation process is a 41*20 PCA matrix, which will later be used for PCA 

stream processing. 

 

B) Stream Processing Mode (PCA Model Application): Since Kafka is already used as a stream platform 

in big data platforms, Kafka Streams is a good and simple option for developing stream (real-time) 

applications to take advantage of the Kafka platform. Stream data (a vector of 41 components) is 

collected from the TESim OPC UA server simulator and continuously pushed to a Kafka topic. A 

Kafka Streams application consumes data from a Kafka input topic, calculates the low-dimensional 

space for each input (vector) based on the PCA matrix, and then sends the result to another Kafka 

output topic. This application is developed in Java and uses the Kafka Stream library. However, for 

simplicity and portability, Java applications are packaged as Docker images that can be deployed in a 

variety of environments. Dockerized Kafka Streams applications can also run anywhere using 

multiple Instances (parallel containers), but require a distributed platform for orchestration and 

automatic scaling. A Kubernetes cluster was used for this. 

 

C) Evaluation: To evaluate the batch processing part of the proposed big data platform, the PCA matrix 

was computed in parallel on multiple workers in the Apache Spark Framework, and each worker's 

unique number of workers and cores were evaluated. For each experimental setting, i.e. each 

combination of operator and core, n ≥ 36 million past measurement vectors with nc = 41 components 

were used to compute the PCA matrix. Batch processing throughputs of 11859 and 75203 processed 

records per second were achieved using a single core and eight cores, respectively, in a single worker. 

In Figure 3, using a parallel implementation with 3 workers (8 cores each) the throughput is improved 

to 220238 processed records per second. That is, 2.92 times faster. 
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Figure 3. PCA Model Building: Batch Processing Throughput 

The introduced architecture is not limited to learning process models, but is tailored to the application of 

learned models. After learning a PCA model, we can deploy and apply the model on individual processing 

nodes to achieve dimensionality reduction on local nodes. For this purpose, the Kafka system creates a subject 

and distributes it into many partitions among intermediaries, one partition for each plant or asset, and enables 

parallel processing on these partitions. Stream processing is evaluated on continuous data of measurement 

vectors with nc = 41 components at several instances (1, 2, 3, 10, 20 instances). According to the results, using 

20 stream application instances instead of a single application instance can increase the number of records 

processed per second by 18.6 times from 2736 to 50973 Fi 

 

 

Figure 4. Realtime PCA Application: Stream Processing Throughput 

One thing to note here is that in some cases, for example, the performance factor may outweigh the instance 

count. When the number of instances is a multiple of the number of Kafka brokers (3 in the setup), the 

interpretation of this is that the computation will be split evenly between the application instances. Finally, it 

should be taken into account that the parallelization factor can be adjusted based on available resources. For 

example, the performance of a stream application starts to decrease by 40 (3 brokers) because the number of 

Kafka brokers is constant. So, you need to scale your Kafka cluster to meet your requirements. 

 

5. CONCLUSION 

In this paper, we proposed a container orchestration system for process workloads for enterprise-wide 
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process-oriented workload integration by combining the potential of big data and machine learning 

technologies. The proposed system satisfies the following requirements. First, it uses an integrated OPC UA 

information model with semantic information to meet data integration requirements. Depending on the process 

data description, the machine's technology, components, and method of executing a given task, multiple 

machines can share the same information model and easily communicate and use mutual services. Additionally, 

a schema registry in the message broker system and/or data store facilitates data integration between higher-

level systems. Second, the system allows data to be collected not only from legacy systems and tools, but also 

from other types of machines using a variety of protocols. Supports data collection and processing in both 

batch and stream modes. Third, all frameworks and systems used for implementation, including Kafka, HDFS, 

MongoDB, InfluxDB, Spark, and Kubernetes, are distributed, scalable, and redundant across various layers. 

Fourth, the proposed system is modeled as layers of individual components that can be connected to each other. 

Future research tasks should also consider security aspects from the asset layer (supported by OPC UA) to the 

business layer by activating data security technologies such as encryption, authentication, and authorization 

functions in the framework. 
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